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In Vitro Conservation Through
Slow-Growth Storage

Ravishankar Chauhan, Vikram Singh, and Afaque Quraishi

Abstract In vitro approaches are valuable for the conservation of plant biodiversity
that includes the preservation of genetic resources of vegetatively propagated spe-
cies, threatened plant species, taxa with recalcitrant seed, elite genotypes, and
genetically modified/engineered material. The mid-term conservation is usually
achieved by reducing the growth of in vitro cultures through the application of
minimal media and growth retardant or storage at low temperatures resulting in
prolonged intervals between the subcultures. Moreover, the combinations of all
these factors are also employed for slow-growth storage. The medium-term conser-
vation strategies are consistently employed for a large number of plant species,
including various threatened species, from tropical as well as temperate origin. For
long-term conservation of plant species, cryopreservation (storage in liquid nitrogen
at �196 �C) is commonly employed. However, the main difficulties associated with
cryopreservation are the maintenance of in vitro cultures as the procedure is highly
technical and expensive since it involves a huge amount of resources and labor. In
vitro slow-growth storage, therefore, enables a possible solution for mid- to long-
term conservation of plant materials in limited space and at reduced costs too. Slow-
growth procedures allow clonal plant conservation for several months to years
(depending upon the species) under aseptic conditions, requiring the infrequent
successive transfers of the cultures.

Keywords Cold storage · Endangered species · Germplasm storage · Growth
retardant · Minimal medium
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1 Introduction

The conventional method of plant germplasm conservation includes their mainte-
nance as the whole plant in the field (Pathirana et al. 2016). Field maintenance of
plant materials not only carries the risks of infections of viral, fungal, and bacterial
diseases and insect pests but also includes losses due to the environmental disasters
such as flood, earthquake, drought, fire, volcanic eruptions, etc., which has led to the
erosion of valuable germplasm resources (Barba et al. 2008; Carimi et al. 2011).
However, duplication of materials in different fields is an option but is a quite
expensive approach. The major obstacles in in situ conservation practices are the
requirement of larger space, the high cost of operation, complicated management,
and risk of damage by both biotic and abiotic factors of the environment (Rao 2004).
Therefore, risks involved in field maintenance have led us to search for secure, cost-
effective, and efficient protocols for effective conservation of plant diversity. The
plant genetic resources are conserved in the forms of seeds, bulbs, or tissue culture-
derived propagules in various gene banks and termed as ex situ conservation
(Paunescu 2009). Ex situ conservation is the maintenance of plant genetic resources
under controlled conditions, i.e., away from their native habitats and cultivation in
botanic gardens and nurseries and by seed storage or in gene banks through in vitro
conservation (Dhillon and Saxena 2003; Paunescu 2009). In vitro approaches have
two kinds of storage strategies: (1) active strategy which refers to short- to mid-term
storage of samples and (2) base strategy referring to long-term preservation of
materials (Linington 2003; Engelmann 2011). In gene banks, both the strategies
are complementary to each other in which germplasms are stored in an environment
free from vulnerable depletion by nature and by arthropods (Linington 2003; Li and
Pritchard 2009). Both the strategies distribute disease-free plants, thus minimizing
the cost of disease indexing (Lynch et al. 2007). Among these, the most suitable
method suggested for long-term ex situ conservation of any species is storage of their
seeds.

The species having orthodox seed form can be stored at a low temperature for
extended periods by dehydrating down their moisture level (Roberts 1973). How-
ever, the conservation of other species and seed form is little problematic
(Engelmann 2011), for example, the vegetatively propagated species that do not
produce seeds. Similarly, recalcitrant seeds can’t be dried sufficiently at the low
moisture level with viability to let their storage at low temperatures (Roberts 1973).
Moreover, the seeds of few species are generally highly heterozygous in nature and,
therefore, unsuitable for the conservation purpose. Such species are thus chiefly
maintained as clones (Engelmann 2011). Until now, most of the activities on ex situ
conservation of plants have focused particularly on crops. However, conservation of
wild and threatened plant species has also become an issue of concern. The statistics
of the International Union for Conservation of Nature (IUCN) revealed that out of
over 12,000 plant species, approx. 70% are in the threatened category and 19% are
critically endangered (Trejgell et al. 2015). In addition, 28 species are extinct in the
wild. In situ conservation strategy alone may not be sufficient to rescue the
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threatened species (Sarasan 2010). In line, advancements in the biotechnology lead
to the introduction of few novel categories of germplasm that includes clones
obtained from elite genotypes, the cell lines with special attributes, and genetically
transformed clones (Engelmann 1992). This new category is often of high added
value and a bit problematic to produce (Engelmann 2011). The development of
efficient techniques to ensure its safe preservation is, therefore, of paramount
importance. A lot of efforts have been made to improve the quality and conservation
methodologies by field gene banks and botanic gardens. However, clearly alternative
approaches to plant genetic conservation are needed, and since the early 1970s,
attention has turned to the possibilities offered by biotechnology, specifically in vitro
culture system. Besides the conventional forms of protection of economically
important and threatened species in the past decades, advancements in biotechnol-
ogy and especially in the area of in vitro culture techniques led to the development of
procedures that can be used as an excellent tool in plant conservation (Maryam et al.
2014). Plant tissue culture systems allow propagating plant material in an aseptic
environment with high multiplication rates (Sharma et al. 2018). Disease-free clones
can be obtained through meristem culture in combination with different therapies
such as chemo-, thermo-, and electrotherapy, thus ensuring the production of
disease-free stock materials and simplifying procedures for the germplasm exchange
throughout the world (Singh et al. 2018). The miniaturization of explants allows
reducing space requirements and, consequently, labor costs for the maintenance of
plant germplasm. In vitro conservation protocols have been established for ample
plant species, including a number of endangered species (Chauhan et al. 2016;
Kamińska et al. 2016, 2018). In addition, another importance of ex situ conservation
is that it is an internationally accepted strategy, as stated in the Global Strategy for
Plant Conservation (UNEP 2002), and is frequently employed by a number of
organizations known for biodiversity conservation (Sarasan et al. 2006). Plant tissue
culture technique has been reported as an effective tool to conserve many plant
species, especially of tropical origin (Engelmann 1991). For the short- and mid-term
conservations, various techniques have been developed, which not only results in
slow growth of the cultures but also prolongs the time interval between two sub-
cultures (Cha-um and Kirdmanee 2007; Cordeiro et al. 2014).

2 Germplasm Storage Strategies

The maintenance of plant stocks or material under aseptic and adequate environ-
mental conditions can be conducted using the two main approaches. The first one of
these approaches is based on conserving material without disturbing its growth, i.e.,
successive transfer in a fresh medium, while the second one is based on conservation
under slow-growth condition (Withers 1980; Engelmann 1991; Sarasan et al. 2006;
Novikova et al. 2008). The shortcomings of a successive transfer are an increase in
work expenses and the consumption of basic materials and nutrients (Cordeiro et al.
2014). It should also be taken into consideration that long-term subculture can be
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followed by a decrease and/or the loss of the morphogenetic potential of the culture
as well as by an increase in the probability of genetic changes during long-term
subculturing (Joy et al. 1991; Bessembinder et al. 1993; Hao and Deng 2003).
Furthermore, there is a risk of losing propagating material as a result of a human
errors or microbial contamination in the process of subculture (Grout 1990); there-
fore, it is advisable to reduce frequent interventions during conservation.

With due regard for all these factors, in vitro culture under slow-growth condi-
tions is supposed to be the most effective method of plant germplasm conservation.
The use of this approach is aimed at slowing down the growth of cultures and
prolonging the interval between two successive transfers (Cordeiro et al. 2014), as
well as raising the degree of safety during the conservation of cultures as a result of a
decrease in interferences in a culture system and the minimization of the risk of
contamination during subculture (Grout 1990; Engelmann 2011). The success of the
use of certain approach depends on numerous factors, such as the possibility of
extending the time period between two successive transfer, how long the influence of
a limiting factor lasts until the moment when that factor begins to negatively affect
the culture, and how fast the regular developmental functions could be restored after
reverting to standard culture conditions (Grout 1990). The essential condition for
using slow-growth procedures is the study of vital capacities of various kinds of
cultures and the stability/instability of the preserved material (Shibli et al. 2006; Rai
et al. 2009).

3 Slow-Growth Storage Technique

Slow-growth storage (also known as mid-term conservation) is based on the reduc-
tion of the metabolic activity, i.e., the growth rate of in vitro cultures by maintaining
them on modified growth medium or in altered culture conditions (Lambardi and
Ozudogru 2013). The motto is to prolong the duration between two subcultures
(depending on the species) of in vitro cultures without negatively affecting their
regrowth potential. Reduction in the growth of in vitro cultures is generally achieved
by modifying the culture medium and/or the culture conditions (Engelmann 1998,
2004). Among these approaches, the most widely applied practice is temperature
reduction, which can popularly be coupled with a decrease in light intensity or
incubation of culture in the dark condition (Engelmann 2011). A number of tropical
species often show their susceptibility to low-temperature damage and hence can be
stored at a comparatively higher temperature, which further depends on the cold
sensitivity of the species (Engelmann 2011). And, to maintain in vitro culture, it
should be subsequently subcultured under standard culture conditions to avoid
contamination and/or deterioration of stock materials (Niino and Arizaga 2015).
Manipulations of the culture medium may include dilution of mineral elements,
reduction/enhancement of sugar concentration, changes in nature and/or concentra-
tion of plant growth regulators, and an addition of osmotically active compounds.
Moreover, in a few cases, plant growth retardants were also applied (Acedo and
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Arradaza 2012; Trejgell et al. 2015). Various parameters influence the efficiency of
in vitro slow-growth storage procedures that includes the selection of explants, its
chemical/physiological state during storage, the type of culture vessel, its volume, as
well as the volume of a culture medium used for storage (Niino and Arizaga 2015,
Engelmann 1991).

4 Low-Temperature Storage

The most extensively applied technique is temperature reduction, which can be
pooled with a decrease in the light intensity or by maintaining the cultures in the
dark conditions. Tropical and sub-tropical plant species are often cold-sensitive and
have to be stored at higher temperatures, which depend on the cold sensitivity of the
particular species. Potato in vitro plants can be stored at 7 �C without transfer for up
to 18 months (Gopal and Chauhan 2010). Other species such as Ananas are much
more cold-sensitive since the 66 accessions of Ananas shoot cultures have to be
conserved at temperatures higher than 20 �C (Souza et al. 2004; Silva et al. 2016).

In vitro slow-growth storage procedures are being frequently used for medium-
term conservation of a number of species, both from tropical and temperate origins,
including crop and medicinal plants, e.g., Coffea, Vitis, Musa, and Acorus (Nassar
2003; Sajid et al. 2006; Kulkarni and Ganapathi 2009; Quraishi et al. 2017), and rare
and endangered species (Thakur et al. 2015; Chauhan et al. 2016). However, if
in vitro conservation appears as a simple and practical option for long-term conser-
vation of various species and has extensive medium-term applications, its imple-
mentation still requires customization for any new species; continuous inputs are
mandatory, and a question remains in regard to the clonal fidelity of the stored
species. Moreover, it is not always possible to apply a single protocol for preserving
genetically diverse species. For example, slow-growth storage experimentation
performed with an in vitro collection of Ananas germplasm including 66 accessions
revealed a huge variability in the response of the accessions to the storage conditions
(Silva et al. 2016). Some of them showed somaclonal variation during storage, while
others did not show any erosion.

Plant species storage at non-freezing low temperatures has been very successful
(Koc et al. 2014). At lower temperature regime, the aging of the plant cells/tissues is
slowed down but not completely stopped. Consequently, successive transfer of the
plant material is necessary although very infrequently. Some examples where
shoots/plants have been stored with different strategies of slow growth for various
durations are listed in Table 1.

Preil and Hoffmann (1985) stored approx. 700 breeding lines of Chrysanthemum
at 2–3 �C in the diffused light of 10–15 lux. At this condition, few of the lines
survived up to 5 years, and the authors noticed that aeration of the cultures played a
crucial role in storage. In the poor gas exchange conditions, the shoots became
vitrified. Cold storage at a temperature of 10 �C in the diffuse light also induces
vitrification of Cheiranthera volubilis shoots and, thus, reduces survival too
(Williams and Taji 1987).
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The double-node cuttings of Drosophyllum lusitanicum could be kept alive for
8 months at 5 �C in growth-limiting condition (Gonçalves and Romano 2007).
Low-temperature storage has been applied with most promising results to in vitro
shoot/plantlet cultures and less successfully to undifferentiated cell cultures. Slow-
growth can retard the loss of totipotency of cultured cells/tissue and the ability to
synthesize secondary metabolites too in callus cultures stored for relatively short
periods (Seitz 1987). The storage temperature usually depends on the sensitivity of
the species. Whereas for temperate species it ranges from 5 to 9 �C, for tropical
species, it is often much higher (Kulkarni and Ganapathi 2009). Shoot tips of
Actinidia spp. could be maintained at 8 �C for 52 weeks with 100% survival
(Monette 1987). The shoots retrieved after a storage period appeared normal in
respect to growth and proliferation rates. Similarly, the cultures of Colocasia
esculenta, another tropical species, conserved for 3 years at 9 �C (Zandvoort and
Staritsky 1986). On the contrary, Musa cell suspension cultures were not able to
tolerate temperatures lower than 15 �C (Kulkarni and Ganapathi 2009). Few banana
cultivars that were stored below 15 �C suffered damage within 3 months (Withers
and Williams 1986). At 15 �C some of the accessions of banana survived up to
17 months with a viability of 92%, but in others, viability was sharply reduced to
50% within 13 months (Withers and Williams 1986). According to Watt et al.
(2009), the best condition for the storage of globular somatic embryos of Saccharum
spp. is to place them on ½-strength MS medium (Murashige and Skoog 1962)
supplemented with only 10 g L�1 of sucrose and incubate at 18 or 24 �C. Saccharum
spp. stored under these conditions for 8 months showed approx. 80% survival, and
most of the plants appeared normal. Similarly, cassava plantlets must be stored at
temperatures higher than 20 �C (Roca et al. 1984). The low-temperature storage
protocols of maintaining in vitro cultures hold great promise in the nursery industries
(Preil and Hoffmann 1985). During the periods of low demand for a particular
species or variety for which potential markets exist in the future, the in vitro cultures
may be efficiently shelved in normal refrigerators and the time and, consequently,
money required to maintain them by successive transfer or restarting fresh cultures
saved. This methodology may also apply to research stocks for further experimen-
tation. However, one of the expected limitations in low-temperature storage of plant
germplasm may be the gradual habituation of some materials to slow-growth
conditions (Withers 1991).

5 Minimal Medium

By modifying the medium composition usually by reducing the sugar content,
minerals, growth regulators, or osmotic agents such as sorbitol and mannitol,
inhibition of cell division can be achieved, which significantly limits both callus
formation and shoot development (Shibli et al. 2006; Lambardi and Ozudogru
2013). In this context, the in vitro slow-growth storage of Elettaria cardamomum
was achieved on the half-strength MS, fortified with 30 g L�1 of sucrose, of which
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about 70% of the cultures survived up to 18 months at 25 �C (Tyagi et al. 2009). A
regrowth potential of 96% was obtained by culturing nodal explants excised from
18-month-old conserved cultures of E. cardamomum.

Photinia sp. micro-shoots were able to store at 4 �C and up to 15 months in a
combination of sucrose and mannitol 15 g L�1 each containing QL medium (Quoirin
and Lepoivre 1977) with more than 90% of survival rate (Akdemir et al. 2010). The
stored materials were further recovered and found to proliferate normally in 1 mg L�1

BA supplemented QL medium. The micro-plants of six genotypes of Solanum
tuberosum could be preserved for up to 12 months, without any phenotypic abnor-
malities, and had enough nodes for further subculturing. The conservation was
conducted at 24 �C in the MS medium supplemented with 20 g L�1 sucrose along
with 40 g L�1 sorbitol at a photoperiod of 16/8 h, in which the survival rate was 77.8%
(Gopal et al. 2002). This approach was an effective alternative to low-temperature
(6–8 �C) storage, especially for the species of tropical and sub-tropical origins, where
summer temperature may reach up to 45–50 �C (Gopal et al. 2002).

The effects of osmotic doses along with different temperature regimes were found
efficient for tuber- or bulb-producing species. MS medium, comprising 3% (w/v)
sucrose, 4% (w/v) sorbitol, and 1 mg L�1 ancymidol, was seen to be the best suited
for slow-growth storage of in vitro cultured crowns of Asparagus officinalis
(Fletcher 1994), in which crowns were stored at 6 �C for 16 months and were
regrown with 100% survival. Similarly, Bonnier and van Tuyl (1997) successfully
stored the in vitro bulblet of Lilium spp. for a period of 28 months at 25 �C on
¼-strength MS medium supplemented with 9% (w/v) sucrose. Afterward, these
cultures were successfully regenerated with a survival rate of 92%.

Further, the combined effects of sucrose, mannitol, and photoperiod were
assessed at 6 �C of temperature for the conservation of micro-shoots of S. tuberosum
by Sarkar and Naik (1998). Their slow-growth media were comprised of 30, 40,
50, 60, 70, or 80 g L�1 sucrose along with 20, 40, or 60 g L�1 of mannitol. Over
30 months of storage, sucrose alone did not improve the viability of these cultures.
However, the addition of 20 g L�1 of mannitol in the storage medium increased the
survival rate (83%) of micro-shoots. Further, in order to in vitro conserve the
Saccharum officinarum germplasms, lateral buds onto the MS medium with an
osmoticum were screened (Sarwar and Siddiqui 2004). In the 2% mannitol (w/v)-
supplemented MS medium, the lateral buds were healthy up to 165 days and with
75% survival rate, while the cultures with 3% (w/v) mannitol showed 100% survival
up to 105 days only, at 17 �C of temperature; conducted study also suggested that
low temperature (10 �C) was unfavorable for in vitro storage of S. officinarum under
both light and dark conditions.

The in vitro shoot tips of Vanilla planifolia could successfully be maintained for
more than 1 year, without subculturing, on the MS medium supplemented with
15 g L�1 each of sucrose and mannitol, at 22 �C and with 90% recovery (Divakaran
et al. 2006). After few years of this report, the in vitro shoots of Saccharum sp. were
successfully stored in the½-strength MS medium amended with 30 g L�1 sorbitol, at
both 18 and 24 �C for a duration of 8 months (Watt et al. 2009). The highest survival
percentage and shoot regrowth (90%) were observed in cultures stored at 18 �C.
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Studies pertaining to in vitro preservations of Dianthus spiculifolius and
D. tenuifolius were performed (Mitoi et al. 2009), in which addition of 0.16 and
0.32 M mannitol in the MS medium, in combination with vitamin of B5 medium
(Gamborg et al. 1968), was found to be most suitable for their conservation and
regeneration after 6 months of storage at 25 �C. The addition of mannitol (58.4 mM)
in the MS medium was found best for 7 months’ storage at 5 �C of Prunus sp. with a
survival rate of 100% (Marino et al. 2010). In the case of Podophyllum peltatum,
storage of micro-shoots at 10 and 25 �C of temperatures revealed 100% survival after
the addition of mannitol (2%, w/v) or sorbitol (2%, w/v) to the MS medium (Lata
et al. 2010). However, a negative impact of both the osmoticum, in terms of shoot
proliferation rate, was there when stored micro-shoots were cultured on a recovery
medium (Lata et al. 2010). Likewise, the shoot tips of Pyrus sp. could be stored
successfully on the MS medium containing 2.5% (w/v) mannitol, with highest
survival (63.41%) and regeneration (58.81%) potentials at 25 �C (Ahmed and
Anjum 2010). The efficiencies of sucrose, mannitol, or sorbitol, in a series of
concentrations (3%, 6%, 9%, or 12%, w/v), were assessed for storage of Stevia
rebaudiana micro-shoots (Shatnawi et al. 2011). Afterward, a dose of 3–9% (w/v)
sucrose was found to favor higher survival (94.6%) of micro-shoots even after their
storage for 32 weeks. However, under dark storage, the survival rate of these cultures
was reduced significantly. The micro-shoots of two Pistacia vera cultivars were
maintained at 4 �C in the dark conditions for 12 months in the MS medium
containing 2% (w/v) of mannitol (Akdemir et al. 2013). More than 90% of prolif-
eration in the micro-shoots of both the cultivars was observed after 12 months of
storage.

6 Application of Growth Retardant

Growth retardants are natural/synthetic chemical compounds that can be applied in
the culture medium to change vital processes by modifying hormonal balance in a
plant in vitro (Espindula et al. 2009). Growth retardants act as signalling compounds
in the regulation of plant growth and development. They typically bind to receivers in
the plant and induce a series of cell changes that can affect the initiation/modification
of tissue development (Espindula et al. 2009). The augmentation of plant growth
inhibitors in the culture medium is also a significant measure to retard cell growth;
such inhibitors include abscisic acid (ABA), maleic hydrazide, paclobutrazol, and
few others (Renau-Morata et al. 2006; Sharma et al. 2012; Trejgell et al. 2015).

Kovalchuk et al. (2009) successfully conserved the micro-shoots of Malus
domestica for 21 months in the MS medium augmented with 1 mg L�1 of ABA at
4 �C, whileGlycyrrhiza glabra shoot apices cultures responded best for storage up to
6 months, when incubated at 10 �C under a dark condition in 5 mg L�1 ancymidol,
0.1 mg L�1 ABA, and 1 mg L�1 polyethylene glycol (Srivastava et al. 2013).
Addition of 9.5 μMABA and 1.5% (w/v) each of sucrose and sorbitol could enhance
survival and proliferation of 9-month-old micro-shoots of Senecio macrophyllus
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during their re-culture in optimal conditions, compared to those cultures stored on
the MS medium lacking ABA (Trejgell et al. 2015).

Recently, the subculture duration of Tetrastigma hemsleyanum micro-shoots was
significantly prolonged up to 10 months, by using 0.2 mg L�1 of maleic hydrazide
8 �C with 8/16 h photoperiod (Peng et al. 2015). In this study, the addition of growth
retardants such as ABA, chlormequat, and paclobutrazol did not improve
T. hemsleyanum micro-shoot survival at both 8 and 25 �C of temperatures.

7 Slow-Growth Storage of Elite Tree Species

In vitro propagation technique plays a key role in increasing the production of
woody plants and the re-establishment of threatened plant germplasms (Quraishi
2013). However, those techniques involve periodic subculturing of cultures to
change the gaseous state of the vessels and to refresh the components of a medium
(Ozden-Tokatli et al. 2010). Plant biodiversity comprises ample old mature tree
diversity having various featuring characteristics such as Ginkgo biloba: the living
fossil or the Taxus trees famous for their anti-cancer bioactive compound. For the
exploitation and conservation of such elite clones, slow-growth storage can be useful
as few hard-wood species efficiently conserved through these techniques.

Pistacia lentiscus can be efficiently stored in 6months at 4 �C in the dark (Koc et al.
2014). Further, the response of mannitol was examined for mid-term conservation of
Eucalyptus ventricosum (Negash et al. 2001). E. ventricosum could be effectively
conserved up to 6 months’ duration at 15 �C. Similarly, in vitro shoot tips of Malus
pumilawere stored at 4 �C on theMurashige and Tucker (1969) medium fortified with
2% (w/v) each of sucrose andmannitol, in which all the shoot tips were able to survive
up to 12 months of storage, revealing 100% recovery (Hao and Deng 2003). The
mid-term storage of Eucalyptus grandis shoot cultures was achieved for up to
10 months by the addition of 10 mg L�1 of ABA at 25 �C of temperature (Watt
et al. 2000). In this approach, reductions in the light intensity and addition of mannitol
to the MS medium were found to be less effective for the conservation of E. grandis.
Very recently, 45 or 60 g L�1 of sucrose fortified DKWmedium (Driver andKuniyuki
1984) was found to be suitable for in vitro conservation of Prunus avium shoots
(Ozudogru et al. 2017). At 4 �C and under dark condition, these cultures survived up to
16 months of time. However, the inclusion of mannitol in the storage medium did not
reveal any significant impact on shoot quality of P. avium.

8 Conclusion

For long-term storage, cryopreservation, i.e., storage at an ultra-low temperature,
usually that of liquid nitrogen (�196 �C), is the only method. At this temperature, all
cellular divisions and metabolic processes are stopped. The plant material can thus
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be stored without alteration or modification for a theoretically unlimited period of
time (Barraco et al. 2013). However, the main difficulties associated with long-term
maintenance of in vitro cultures are that the procedure is a bit problematic, highly
technical, and expensive as it involves the huge amount of resources and labor (Rao
2004; Capuana and Lonardo 2013). In vitro slow growth, therefore, represents a
possible solution for mid- to long-term storage of plant materials in limited space and
at reduced costs. Furthermore, slow-growth procedures allow clonal plant conser-
vation for several months to years (depending upon the species) under aseptic
conditions, requiring infrequent subculturing (Cha-um and Kirdmanee 2007). Of
the numerous methodologies tried for short-/medium-term conservation of
germplasms, lowering the temperature regime of culture has been most accepted
so far and is being used for routine maintenance of germplasm of a range of plant
species (Withers 1991).
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