

Pt. Ravishankar Shukla University, Raipur (C.G.), India 492010

CURRICULUM & SYLLABUS (Based on CBCS & LOCF)

Five Year Integrated M.Sc. Botany (Semester System)

Semester: I-X

Session: 2025-30

Note: The syllabus for the session 2025-26 is made effective as is for the session 2024-25.

Approved By:

Board of Studies:

Botany

Date:

23rd May 2025

Name of the Chairman:

KAUSHAL KILHORE -

Name of the Members: (1) DR. Prite Show vay tone
(2) Por. Showard Kenjam

PT. RAVISHANKAR SHUKLA UNIVERSITY RAIPUR, CHHATTISGARH

Center for Basic Sciences

Objectives

The CBS model of education is concept-based and inquiry-driven, as opposed to the more traditional content-based models. There is a strong emphasis on the interdisciplinary nature of today's science, and recognition of the importance of research experience in undergraduate education.

Courses offered in the Int. M. Sc. program at CBS form part of a comprehensive program that will enable the students-

- To understand the basic laws of nature and develop necessary skills to apply them to any desired area or discipline.
- To undertake projects to solve field base problems.
- To provide student centric learning facilities for the development of overall personality of learner. The program is planned as student-centric collaborative learning.
- Students get trained for a career in basic sciences or any related applied science or technology.

Integrated Master of Science Botany

Courses offered during the first year (Semesters I to II) are meant as basic and introductory courses in Biology (Botany and Zoology), Chemistry, Mathematics, Physics and Environmental Science. These are common and mandatory for all students. These courses are intended to give a flavour of the various approaches and analyses and to prepare the students for advanced courses in later years of study. In addition, there will be Interdisciplinary Courses for computational skills and mathematical methods. Students are also given training to develop skills in Communication, Creative & Technical Writing and History of Science through courses in Humanities and Social Sciences.

In the second year (Semester - III), students have the freedom to choose their stream for masters program on the basis of their interest. Courses offered in the first two years would

on

help them make an informed judgment to determine their real interest and aptitude for a given subject.

One of the important features that the CBS has adopted is semester-long projects called Lab projects and reading projects, which are given the same weightage as a regular course. By availing this, a student can work in an experimental lab or take up a theory project every semester. This is meant to help the student get trained in research methodology, which will form a good basis for the 9th semester project work in the fifth year. The subjects/courses are described further with their credit points. Few courses are common to different streams.

Program Outcomes (POs)

Integrated M.Sc. Botany is 5-year, 10 semester course. The outcome goals can be realized by engaging with the diverse components integrated into the curriculum, as outlined below. Each of these components is meticulously crafted to yield particular outcomes sought upon the successful completion of the program.

PO-1	Knowledge: Provides deep understanding of all the theoretical as well as practical aspects in basic and applied areas of biological sciences especially plant sciences.
PO-2	Critical Thinking and Reasoning: Exhibit advanced critical thinking and reasoning skills, enabling them to critically evaluate and analyze complex biological fundamentals and experiments.
PO-3	Problem Solving: Applying the biological fundamentals and problem-solving skills to tackle intricate scientific and real-world issues.
PO-4	Advanced Analytical and Computational Skills: Proficient in employing advanced analytical techniques and computational tools to conduct in-depth biological problems and research.
PO-5	Effective Communication: Effectively communicate complex scientific concepts and research findings to both technical and non-technical audiences, using written reports, presentations, and teaching.
PO-6	Social/Interdisciplinary Interaction: Integrate biological concepts especially plant sciences and methodologies into interdisciplinary contexts, collaborating effectively with professionals from various fields to address complex scientific and societal challenges.
PO-7	Self-directed and Life-long Learning: Recognize the importance of ongoing professional development and lifelong learning in the dynamic field of biological sciences and acquire knowledge and skills in different techniques related to plant sciences throughout their professional careers
PO-8	Effective Citizenship; Leadership and Innovation: Capable to identify,

•

stin on

1	formulate, investigate and analyze the scientific problems and innovatively
	to docide and access products and collitons in IPAI inc DIVERSITY
PO-9	Ethics: Maintain the highest ethical standards in research and professional
	conduct within the field of plant sciences.
PO-10	Further Education or Employment:
	Pursue for Ph.D. program and get employment in academia, research
	Institutions, industry, government, and other related sectors.
PO-11	Global Perspective:
	Recognize the global nature of scientific research in plant sciences and its
	impact, appreciating diverse cultural perspectives in scientific practices and
	considering international contexts in their work.

Program Specific Outcomes (PSOs)

Upon successful completion of the program students will be able to attain following outcomes-

PSO1	Comprehensive understanding of fundamentals, principles and practical aspects of biological sciences especially plant sciences.
PSO2	Apply the knowledge of biology including Plant sciences in interdisciplinary fields to address and solve societal issues.
PSO3	Apply the analytical instruments and computation programs ensuring precision, efficiency, and innovation in scientific research, industry, healthcare, environment and education.
PSO4	Proficiently convey and promote ideas in the field of biological sciences to disseminate knowledge and enhance the awareness about plant science research and concepts in the community.
PSO5	Qualify national and state-level examinations like GATE, NET, SLET, and SET can lead to career opportunities in academia, research, and related fields.

Integrated M.Sc. Botany

Specification of Course	Semester	No. of Courses	Credits
Core	I-IX	63	220
	> Theory	42	144
	> Practical	18	48
	➤ Project/Dissertation	03	28

W 6032

coul

Elective	X	04	20
Total		67	240
Additional Cours	l ses (Qualifying in na	ture, for Student admitte	ed in CBS only)
Additional Paper (EVS)	I	01	02
	II	01	02
Skill Enhancement /Value Added Courses	v	01	02
	VI	01	02
	VII	01	02
Skill Enhancement Course [only for Biology (Botany and Zoology) students]	VIII	01	02

Course Structure for the Integrated M.Sc. Botany

Effective from Session 2025-30

(Abbreviation: B: Biology (Botany +Zoology), C: Chemistry, M: Mathematics, P: Physics, G: General, H: Humanities, BL: Biology Laboratory, CL: Chemistry Laboratory, PL: Physics Laboratory, GL: General Laboratory, BOE: Botany Elective, BO: Botany, BOL: Botany Laboratory

- Minimum total credits for Integrated M.Sc. degree is 240.
- Semesters I to VIII will carry 25 credits each.
- Semesters IX and X will carry 20 credits each.

FIRST YEAR

Semester -I

5

1	Course	Course Code	Course Title	Course	Contact Hours	Credit	Marks
							L

Hy D

Gozin

oe

Nature			Type (T/P)	/Week (Theory +Tutorials)	5	CIA	ESE	Total
	7101		T	[2+1]	3	60	40	100
Core	B101	Biology - I			3	60	40	100
Core	C101	Chemistry - I	T	[2+1]	+ 3	60	40	100
Core	M101/MB101	Mathematics - I	T	[2+1]		60	40	100
Core	P101	Physics - I	T	[2+1]	3		40	100
Core	G101	Computer	T	[2+1]	3	60	40	
Соге	H101	Basics Communication	T	[2]	2	60	40	100
Соге	PL101	Skills Physics	P	[4]	2	60	40	100
Core	CL101	Chemistry Laboratory – I	P	[4]	2	60	40	100
Core	BL101	Biology Laboratory - 1	P	[4]	2	60	40	100
Core	GL101	Computer Laboratory	P	[4]	2	60	40	100
		(25 of 240 credits)		Total	25			
Additional Paper	ES101	Environmental Studies	T	[2]	2	60	40	100

Semester-II

Course Nature	Course Code	Course Title	Course Type (T/P)	Contact Hours /Week (Theory	Credits	Marks		
Tiatust			1300(1/1)	+Tutorials)		CIA	ESE	Total
Core	B201	Biology - II	T	[2+1]	3	60	40	100
Core	C201	Chemistry - II	Т	[2+1]	3	60	40	100
Соге	M201/ MB201	Mathematics - II	Т	[2+1]	3	60	40	100
Core	P201	Physics - II	T	[2+1]	3	60	40	100
Core	G201	Electronics and Instrumentation	T	[2+1]	3	60	40	100
Core	PL201	Physics Laboratory – II	P	[4]	2	60	40	100
Core	CL201	Chemistry Laboratory – II	P	[4]	2	60	40	100
Core	BL201	Biology	P	[4]	2	60	40	100

Jan Coin

ou

		Laboratory - II				[
Core	GL201	Electronics	P	[4]	2	60	40	100
		Laboratory						
Соге	H201	Communication	P	[4]	2	60	40	100
		Skills Lab			1		}	
		(50 of 240		Total	25			
		credits)				į		
Additional	ES201	Environmental	T	[2]	2	60	40	100
Paper		Studies						İ

SECOND YEAR

Semester-III

Course Nature	Course Code	Course Title	Course	Contact Hours	Credit		Marks	
· · · · · · · · · · · · · · · · · · ·	Coue		Type (T/P)	/Week (Theory +Tutorials)	S	CIA	ESE	Total
Core	CB301	Essential mathematics for Chemistry and Biology	T	[3+1]	4	60	40	100
Core	CB302	Biochemistry-I	T	[3+1]	4	60	40	100
Соге	CB303	Organic Chemistry-I	Т	[3+1]	4	60	40	100
Core	B301	Cell Biology - I	Т	[3+1]	4	60	40	100
Core	H301	Creative Hindi	T	[2+0]	2	60	40	100
Core	H302 (IKS Course)	History and Philosophy of Science	Т	[2+0]	2	60	40	100
Core	BL 301	Biology Laboratory	P	[6]	3	60	40	100
Core	GL301	Applied Electronics Laboratory	P	[4]	2	60	40	100
		(75 of 240 credits)		Total	25			

^{*}H302 is Indian Knowledge System Course (IKS)

Semester- IV

Course Nature	Course Code	Course Title	Course Type(T/P)	Contact Hours /Week	Credit s		Marks	
Mature	Cour			(Theory +Tutorials)		CIA	ESE	Total
Соге	PCB401	Physical and Chemical Kinetics	Т	[3 + 1]	4	60	40	100
Core	CB401	Introductory Spectroscopy (UV- vis, fluorescence,	Т	[3+1]	4	60	40	100

AN D

Con an

ol

				T	7	l]	
		IR, Raman, NMR)				60	40	100
Core	B 401	Cell Biology - II	T	[2+1]	3			
Core	B 402	Biochemistry - II	T	[2+1]	3	60	40	100
Core	G401	Statistical Techniques and Applications	T	[3+1]	4	60	40	100
Core	BL 401	Biology Laboratory	P	[6]	1 3	60	40	100
Core	GL 401	Computational Laboratory and Numerical Methods	P	[4]	2	60	40	100
Core	H401	Communication Skills Lab	P	[4]	2	60	40	100
		(100 of 240 credits)		Total	25			

THIRD YEAR

Semester- V

Course Nature	Course Code	Course Title	Course Type	Contact Hours /Week (Theory	Credit	Marks			
			(T/P)	+Tutorials)	S	CIA	ESE	Total	
Core	CB501	Analytical Chemistry	T	[3+1]	4	60	40	100	
Core	B501	Genetics	T	[3+1]	4	60	40	100	
Core	B502	Molecular Biology	T	[3+2]	5	60	40	100	
Core	BO501	Plant Systematics and Biodiversity	T	[3+2]	5	60	40	100	
Core	H501	Scientific Writing in Hindi	T	[2]	2	60	40	100	
Core	BOL501	Botany Laboratory	P	[10]	5	60	40	100	
		(125 of 240 credits)		Total	25				
		Skill F	Inhancemen	t/Value Added Cou	rse				
	SEL501	English Language for Competence Skills	P	[4]	2	60	40	100	

Semester- VI

Course Nature	Course Code	Course Title	Course Type	Contact Hours /Week (Theory	Credit s	Marks			
			(T/P)	+Tutorials)		CIA	ESE	Total	
Core	CB601	Biophysical Chemistry	T	[3+1]	4	60	40	100	
Core	BO601	Microbiology, Phycology and Mycology Immunology	T	[2 + 1]	3	60	40	100	
Соге	BO602	Biology of Lower	T	[3+1]	4	60	40	100	

8

JAN C

ou

 , , , , , ,		Plants						
Core	BO603	Anatomy of	T	[3 + 1]	4	60	40	100
		Angiosperms						
Core	BO604	Plant Physiology	T	[2+1]	3	60	40	100
Core	H601	Ethics in Science and IPR	Т	[2+0]	2	60	40	100
Core	H602	Scientific Writing in English	Т	[2]	2	60	40	100
Core	BOL601	Botany Laboratory	P	[6]	3	60	40	100
		(150 of 240 credits)		Total	25			
		Skill Enl	hancement/	Value Added Cou	rse			
	SEL-601	Pratiyogi Parikshao ke liye Hindi Bhasha	P	[4]	2	60	40	100

FOURTH YEAR

Semester-VII

Course	Course Code	Course Title	Course	Contact Hours	Credits		Marks	
Nature			Type (T/P)	/Week (Theory +Tutorials)		CIA	ESE	Total
Core	B 701	Evolutionary Biology	T	[3 + 1]	4	60	40	100
Core	B702	Imaging Technology in Biological Research	T	[3+1]	4	60	40	100
Core	B703	Immunology	Т	[3+1]	4	60	40	100
Core	BO701	Developmental Biology of Plants	Т	[3+1]	4	60	40	100
Core	BOPGD 701	Botany PG Dissertation/Project	P	[8]	4	60	40	100
Core	BOL 701	Advanced Botany Laboratory-I	P	[10]	5	60	40	100
		(175 of 240 credits)		Total	25			
		Skill En	hancement/	Value Added Cour	se		·	
	SEL-701	Linux Operating System	P	[4]	2	60	40	100

Semester-VIII

Course Nature	Course Code	Course Title	Course Type	Contact Hours /Week (Theory	Credits		Marks	
			(T/P)	+Tutorials)		CIA	ESE	Total
Core	B 801	Virology	T	[3+1]	4	60	40	100
Core	B 802	Biotechnology - I	T	[3+1]	4	60	40	100
Core	B 803	Bioinformatics	T	[3+1]	4	60	40	100
Core	B 804	Biotechnology – II	T	[3 + 1]	4	60	40	100

AND D

Corin

ol

					5	60	40	100
Core	BO L 801	Advanced Botany	P	[10]				100
		Laboratory-II			4	60	40	100
Соге	BOPGD801	Botany PG	P	[8]		1		
		Dissertation / Project			25			
		(200 of 240 credits)		Total				
		Skill En	hancement	/Value Added Cou	rse	60	40	100
	SEBL-801	Statistical Tools in	P	[4]	2			<u></u>
İ		Biological Research	}]			

FIFTH YEAR

Semester- IX

	,		SUII	CSCCI AXX		Marks				
Course Nature	Course Code	Course Title	Course Type (T/P)	Contact Hours /Week (Theory +Tutorials)	Credits	CIA	ESE	Total 400		
Соге	BOPGD901	Botany PG Dissertation/ Project	P	-	20	•	400	400		
		(220 of 240 Credits)		Total						

Semester-X

Course	Course	Course Title	Course	Contact Hours	Credits		Marks	
Nature	Code		Type (T/P)	/Week (Theory +Tutorials)	·	CIA	ESE	Total
Elective	BE1001	Proteomics and Genomics	T	[4+1]	5	60	40	100
Elective	BE1002	Nanobiotechnology	T	[4+1]	5	60	40	100
Elective	BOE1001	Plant Genetic Engineering	T	[4+1]	5	60	40	100
Elective	BOE1002	Plant-Microbe Interaction	T	[4+1]	5	60	40	100
Elective	BOE1003	Plant Tissue Culture	T	[4+1]	5	60	40	100
Elective	BO E1004	Plants for Human Welfare	Т	[4+1]	5	60	40	100
Elective	BOE1005	Phytochemistry and Herbal Technology	T	[4+1]	5	60	40	100
Elective	BOE1006	Plant Secondary Metabolite Production	T	[4+1]	5	60	40	100
	1	(240 of 240 credits)	†	Tota!	20	1		

^{*}Four Subjects will be offered according to the availability of instructors and minimum number of interested students taking a course.

Skill Enhancement/ Value Added Courses:

10

(Offered to the students of CBS)

The candidates who have joined the 5-Year Integrated M.Sc. Program in Center for Basic Sciences shall undergo Skill Enhancement Course /Value Added Course (only qualifying in nature).

Semester	Course Code	Course Title	Course	Hrs/	Credits	Marks			
	·		(T/P)	Week		CIA	ESE	Total	
V	SEL501	English Language for Competence Skills	P	4	2	60	40	100	
VI	SEL601	Pratiyogi Parikshao ke liye Hindi Bhasha	P	4	2	60	40	100	
VII	SEL701	Linux Operating System	P	4	2	60	40	100	
VIII	SEBL801 [Only for Biology (Botany and Zoology)]	Statistical Tools in Biological	P	4	2	60	40	100	

Indian Knowledge System Course: (Offered to the students of CBS)

The candidates who have joined the 5-Year Integrated M.Sc. Program in Center for Basic Sciences shall undergo Indian Knowledge System course which is a core course.

Semester	Course	Course Title	Course	Hrs/	Credits		Marks	
	Code		Type (T/P)	Week		CIA	ESE	Total
Ш	H302	History and Philosophy of Science	T	[2+0]	2	60	40	100

Programme Articulation Matrix

Following matrix depicts the correlation between all the courses of the programme and Programme Outcomes

Course					Augurtu a	POs					** X	PSO					
Code	1	2	⊹3.4	**4	. 5	6-	7	- 8	ં 9	10	11.	1	2.	3	4:	5	
В-101 - 🚜 🚜	1	1	1	×	1	1	1	1	×	7	7	1	1	1	1	1	
C-101	1	1	1	×	4	1	1	1	×	1	4	V	1	1	√	1	
MB-101	1	√	1	1	7	1	1	1	×	1	- √	1	1	1	V	1	
P101	1	1	1	1	4	√	√	1	×	4	1	1	V	1	1	1	
G101	1	1	1	1	1	1	1	1	×	1	1	1	1	1	1	1	
H101	1	1	×	×	1	1	1	1	×	1	1	1	1	1	1	1	
ES101	1	1	1	×	1	1	1	1	×	1	1	1	1	1	1	1	
BL101	1	1	1	×	1	V	1	1	1	1	1	1	1	1	1	1	
PL101	1	1	1	1	1	1	1	1	V	1	1	1	1	1	1	1	
CL101	V	1	1	1	1	1	1	1	1	V	1	V	1	1	1	17	
GĽ101	1	1	1	1	1	V	1	1	1	1	1	1	V	1	1	1	
B201												T	1	1	1	1	

11

w

													,,			
	1	V	1	×		1	$\overline{\mathbf{A}}$	1	×		1	1	1	11	1	V
C-201	1	1	7	7	V	1	1	7	1	1	1	1	V	11	11	V
MB201	1	1	V	7	1	1	1	1	1	1		1	1	1	1	1
P201	1	7	V	V	Ì	1	\	×	1	1	1	V	1	1	1	1
G201	1	1	V	V	Ì	7	1	Î	1	1	1	1	1	1	1	1
H201*: ***	V	1	7	×	Ť	7	7	7		1	1	1	1	1	17	1
ES201	V	1	7	Î	$\frac{\vee}{}$				×			<u> </u>	 	†₹	+	1
BL201	1	V	7		1	√	√	1	1	7	1	1	1		1	1
PL201	1	1	1	×	1	1	1	1	×	1	\	√	7	11	+	
CL201	1	1	1	7		1	1	7	√	1	<u>√</u>	1	7	1	1 1	11
GL201	1	1	1		1	√	1	1	√	1	√,	1	1	11	1	11
CB301	1	1	1	1	√	 √	1	1	√	1	√	_√	1	1	1	1
CB302.	V	1	1	×	$\frac{}{}$	 √	1	7	×	V	√	-√	√	1	1	1
CB303	1	1	1	×	1	√	1	1	×	V	-√	√]	1_	11	1	1
B301	1	1	1	1	1	1	V	×	√	V	1	_√	1	1	1	√
H301	1	1	1	×	$\frac{}{}$	1	√	1	<u>×</u>	V	√	√	√	1	√	√
H302	1	1	1	1	$\frac{}{1}$	1	√	1	1	1	1	1	√	1	√	V
BL301	1	17	1	7	1	1	1	1	_√	√	1	1	1	7	1	1
GL301	1	1	1	×	$\frac{}{}$	1	1	√	×	1	1	√	√	1	√	1
PCB401* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1	1	1	$\frac{1}{\sqrt{1}}$	7	√	1	1	1	√	1	1	1	1	1
CB401	1	1	1	1	$\frac{1}{\sqrt{1}}$	1	1	√	√	1	V	1	1	√	1	$\sqrt{}$
B401	1	1	1	×	1	1	1	√	٧	1	1	1	√ .	7	1	1
B402	1	1	1	×	1	 +	1	٧,	×		1	1	$\sqrt{}$	1	1	1
G401	1	1	1	Î	\	1	7	7	×,		1	1	$\sqrt{}$	√	V	1
BL401 + 1	1	1	1	1	1	7	7	7	1	1	√	1	1	1	V	1
GL401	1	1	1	1	$\frac{1}{\sqrt{1}}$	V	1	7	1	V	√	1	1	√	1	1
H401	1	1	×	×	Ť	7		1	√	V	√	V	√	7	1	1
CB501	1	1	V	V	\	1	7	7	1	1	√	1	√	1	√	1
B501	1	1	1	7	\	1	7	7	V	- 1	√	1	√	1	√	1
B502	1	1	1	1	i	1		- V	1	1	√	-√	√	1	$\sqrt{}$	V
BO 501	1	1	V	V	,	7	7	7	1	1	√	1	1	1	1	1
H501	1	1	×	×	,	1	1	7	1	1	1	1	1	1	1	1
BO L501	1	1	1	×	Ť	7	7	V V	1	1	1	1	1	1	1	1
CB601	1	1	1	V	Ť	1	1		1	1	√	1	1	1	1	1
BO 601	1	1	1	×	Ť	7	7	1	7	√	1	1	1	1	1	1
BO 602	1	1	7	×	1	7		√	×	1	1	1	1	1	1	V
BO 603	1	1	1		1	7	1	1	×	1	1	1	1	1	1	1
BO 604	1	1	V	× √	\		1	1	×	1	1	V	1	1	1	1
	1	<u></u>				1	1	1	×	1	_√	_√	1	1	1	1

W Cipin

cent/

H601		-,,														
	٧	7	1	×	1	_ √	7	1	1	V	√	11	1	TV	TV	11
H602	1	√	√	_√	1	_ \	1	1	1	1	1	1	1	1	1	1
Bol601	1	7	1	- √	1	1	1	1	1	1	1	1	1	1	1	1
B701	1	1	1	√	1	1	1	1	1	1	1	1	T	1	11	1
B702	1	1	1	1	1	1	V	1	1	V	1	1	1	17	1	1
B 703	1	V	1	1	1	7		V	V	V	V	1	1	17	1	1
BO701	1	1	1	1	1	7	1	V	1	V	1	1	1	1	1	1
BL701	1	1	V	7	1	7	J	1	1	-	 	 	<u> </u>	<u> </u>		<u> </u>
BO PGD701	1	1	V	7	7	√	\	7	1	1	1	1	1	1	1	1
B801	1	1	1	V	Ì	1		<u> </u>		1	1	√	1	1	1	1
B802	1	1	1	7	1	7	1	1	1	1	1	1	√	1	1	1
B803	1	1	1	7	1		1	1	1	1	1	1	1	√	1	1
B804	1	1	7	7	1	√,	√	√	1	1	1	√	1	1	1	1
BO L801	1	1	7	7	7	-√	√	1	1	1	1	1	1	1	1	1
BOPGD801	1	1	7	1	7	1	√	1	1	√	1	1	1	1	1	1
BO PGD901	V	1	7	7	1	√	√	1	1	√	√	1	1	1	1	1
BE1001:	V	1	1	1		1	1	7	√	√	_ √	√	1	1	1	1
BE1002	1	1	1		1	7	√	1	√	_ √	_√	1	1	1	1	1
BO E1001	1	1	1	1	1	1	√	1	√	_ √	√	1	1	1	1	1
BO E1002	1	1	1	×	√	√	1	Α,	1	_ √		1	1	1	1	
BO E1003	1	1	1	٧	√	1	√	1	1		1	1	1	1	1	V
BO E1004	1	1	1	7	1	1	1	1	1	√	√	1	$\sqrt{}$	1	1	1
BO E1005	1	1	1	— <u> </u>	1	1	1	√	√	√	7		1	1	1	1
BO E1006	1	1	1	×	√	1	√	1	1	-√	1	1	1	1	7	1
-	73	73	69	×	<u> </u>	_ √	1	1	√	1	1	1	1	1	1	1
	"	13	09	50	73	73	73	73	54	73	73	73	73	73	73	73
SEL501	×	×	×	×	1	1	1	1	V		7	7	7	14.148	200.34038	1000
SEL601	×	×	×	×	1	1	1	1	1		ļ,	1		1	\	1
SEL701	1	1	1	1	7	1		-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	√	1	٧	√	M	1	√ ,
SEBL801	7			- 1			√	7	_ √	√	$\sqrt{}$	1	1	V	7	7
SEBL801	y	٧	٧	×	٧	_ √	√.		V	V	7	₹	V	W.	1	\$ \$
									www.05.9.3	8-824 V	*3500 G.	Legality				🗸 🗆

Semester-wise Syllabus

Integrated M.Sc. Semester - I

Program
Subject Year
Semester
Integrated M.Sc.
Botany
Course Code
B-101
BIOLOGY - I
Core
Hours Per Week (L-T-P)

AN B Grison

conf.

100	1		_60		
Maximum Mark	s		CIA		40
3		2			ESE
		L	1		0
		and the second s	T	1.05 Year (1.05)	P

The aim of this paper is to provide students with a comprehensive understanding of basic biology, the evolution of life, taxonomy and classification, cell biology, cellular systems, and tissue systems. It enables the students to identify living organisms and ecosystems characteristics and basic needs. It explains the processes of growth and development in individuals and populations.

Course Outcomes (CO).

Cours	e Ourcomes (CO):	CITAL
CO.	Expecied Course Outcomes	
No:	Artheend of the course, the students will be able to:	IJ
1.	With this introductory paper students will be able to comprehend general biological processes	
	which are essential for students of all the streams Physics, Chemistry or mathematics.	7.7
2.	Theories of origin of life, evolution and process of development on earth.	<u> </u>
3.	Identification of the levels of higherical organization	E
4.	Cellular mechanism which will further improve the understanding of processes of living beings.	U
14.	Centurar mechanism which will further improve the understanding of p	11
5.	Physiology of different organ systems of the human body.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-create).

CO.PO/PSO Manning for the course:

POCO	Mayabr 61.00	PSO PSO PSO PSO PSO PSO PSO PSO PSO PSO														
	1	2	3	4 6	5	6	7 2 .	8	9	10	11 ×	1 💨	2	3	4	5
COI	3	2	1	-	-	2	2	2	-	3	3	3	2	2	2	3
CO2	3	2	1	-	-	2	2	2	-	3	3	3	2	2	2	3
CO3	3	3	3	2	2	3	3	3	-	3	3	3	3	3	3	3
CO4	3	3	3	2	2	3	3	3	-	3	3	3	3	3	3	3
CO5	3	3	2	2	1	1	2	1	-	3	3	2	ī	3	3	3

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 101 Biology I (Introductory Biology-I)

Unit No.	Topies	No.off Lectures	(0) No.
I	Life: History and origin of life, Concepts of biological evolution, Darwinism, Lamarckism, natural selection, speciation.	8	1
11	Classification of living things: Classification and domains of life, overview of taxonomy of plants, animals and microorganisms.	7	2
Ш	Cell Biology: Discovery of cell, cell theory, classification of cell types, Prokaryotes and Eukaryotes, cell wall, cell membrane, cytoplasm, structure and functions of cell organelles.	10	3
IV	Cell Division and System Development: cell cycle, mitosis, meiosis, and mechanism of development (stem cells), formation of tissues, cell-cell interactions, respiration.	10	4
V	Morphology and Anatomy of flowering plants, photosynthesis. Major Human	10	5

Body Systems: Digestive, Circulatory, Lymphatic, Respiratory system.

BOOKS SUGGESTED:

	DIED DEGGESTED.	
S.No.	Author	Book
1	Neil A Campbell and JB Reece (2007)	Biology with Mastering Biology (8th Edition)
2	NA Campbell, JB Reece, MR Taylor and EJ Simon (2008)	Biology: Concepts & Connections with biology (6th Edition)
.3	Charles Darwin (2008)	On the Origin of Species
4	B Alberts, D Bray, K Hopkin and AD Johnson (2009)	Essential Cell Biology
5	Rene Fester Kratz (2009)	Molecular and Cell Biology For Dummies
6	MJ Behe (2006)	Darwin's Black Box: The Biochemical Challenge to Evolution

Integrated M.Sc. Semester - I

		Integrated iv	i.sc. semester – 1				
Program		Subject	Year		Semester .		
Integrated M.Sc.		Botany	l		I		
Course Code		e Cour	se Title		Course Type		
ES-101		Environn	nental Studies	Additional			
Credit	17		Hours Per Week (L-T-	P)			
		\mathbf{L}_{i}	· Daniel Transfer	4	Polyment		
2		2	2	0			
Maximum Mark	\$	A Company	CIA		ESE:		
100			60	40			
		1 .)			

Learning Objective (LO):

The objective of this course is to aware students about the ecology and environment. It will help individuals to develop an understanding of living and physical environment and how to resolve challenging environmental issues affecting the nature.

Course Outcomes (CO):

	Experient Course On comes As the entire the suitenes will be able to:	ા ા
1.	Concepts of ecology and environment which are important for the student of any stream	U
2.	Basic concept of renewable and non-renewable energy resources	An
3.	Understanding of hierarchy of food on different ecosystem	E
4.	Types and characteristics of major ecosystems	An
5.	Environmental issues and measures to deal with them.	Ap
	Owns' role as a responsible citizen.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	POs
	1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5

رياس

									1 2	13	3	2	3	3	3
CO1 3	3	2	1		1	3	13	-		-	2	5	3	3	3
CO2 3	3	2	1	7-	1	3	3	1	3	13	13-	[5	3	5
CO3+3	3	2	-	1	2	3	3	<u> </u>	3	3	13	 '	-	1 3	3
G04 3 3	3	2	1.	li	2	3	3	T -	3	3	3	1-	12-	1-	-
(CO5) 3	3	3	ti	2	12	3	3	1	3	3	3	1	<u>P</u>	13	<u> </u>

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: ES 101 Environmental Studies Topics THE MULTI DISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES Definition, scope and importance Need for publish awareness. 8 2 II Natural Resources Renewable and non-renewable resources: Natural resources and associated problems. a. Forest resources: use and over - exploitation, deforestation, case studies, timber extraction, Mining, dams and their effects on forests and tribal people. b. Water resources: use and over-utilization of surface and ground water, floods, drought, Conflicts over water, dams benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using Mineral resources, case studies. d. Food resources: World food problems, changes caused by agriculture and overgrazing, Effects of modern agriculture, fertilizer -pesticide problems, water logging, salinity Case studies. e. Energy resources: Growing energy needs, renewable and nonrenewable energy sources Use of alternate energy sources, case studies. Land resources: land as a resource, land degradation, man induced landslides, soil erosion& desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable life -styles. Ш Concept of an ecosystem. Structure and function of an ecosystem. · Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids Introduction, types, characteristic features, structure and function of the īV 5 4 Following Ecosystem: Forest ecosystem Grassland ecosystem Desert ecosystem Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) SOCIAL ISSUES AND THE ENVIRONMENT Environment Protection Act. 8 5 Air (prevention and control of pollution) Act. Wildlife protection Act. Forest conservation Act. Issues involved in enforcement of environmental legislation.

Public awareness.

mo

Value Education
HIV/ADIS
Women and child welfare.
Role of information technology in Environment and Human Health.
Case studies.

BOOKS SUGGESTED:

SN	Author Paragraph and S	Title:
1.	Agarwal K.C.	Environmental Biology 2001
2.	Bharucha Erach	The Biodiversity of India
3.	Bruinner R.C.	Hazardous Waste Incineration, 1989
4.	Bharucha E.	Textbook for Environmental Studies for undergraduate Courses
5.	Begon M., Town send C.R., Harper J.L.	Ecology From Individuals to Ecosystems

Integrated M.Sc. Semester - I

		AMICGIACCU IVI	roc. demester — r				
Program	O PHILL	□ 🛂 Subject 🚈	Year	Semester			
Integrated M.Sc.		Botany	1	I			
Course Code		Cour	se Title	Course Type 👙 🚟			
BL-101		Biology I	Laboratory – I	Core			
Credit			Hours Per Week (L-T-	P) and the state of the state o			
	100.00	Tar Bush security	Beidenstein einer Treite der Steine	on Post of P			
2		-	-	4			
Maximum Marks	S. M. S. S. A. S.		CIA	ESE*			
100			60	40			

Learning Objective (LO):

Lab practical are highly visual, and may involve things like identifying a structure through a microscope, preparation of slides. Biological Science practicals will develop thinking and reasoning skills. It will gratify intellectual instincts and will make students aware of our surroundings and ourselves.

Course Outcomes (CO):

CO- No.	13-perientemuse (intermes Arthe endorthe course the students will be able to:	CI.
1.	Develop the ability to identify the unique characters of organisms, classify them, and understand the concept of evolution and phylogenetic tree	ប
2.	Expertise in Microscopy and Micrometry	An
3.	Learn to prepare slide, staining of specimen and study of morphological characteristics. Differentiating dead v/s live cells using differential staining	E
4.	Acquire skills of section cutting stem, root, leaf and flower. Develop understanding of types, shapes and arrangements of leaves.	An
5.	Develop a deeper understanding of types of human blood cell by differential staining, and count the number of cells using Haemocytometer.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO	POs	W.
co	1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5	Ņ

ol

								- 12	13	13	2	3	3	3
(CO) 3	3	3	2	2	l	3	3	3 3	13	3	2	3	3	3
CO2 3	3	3	2	2	1	3	3	3 3	1-3	3	2	3	3	3
CO3 3	3	3	2	2	ı	3	3	$\frac{3}{2}$	1-3	3	li	2	3	3
CO4 3	3	2	1	1	2	3	3	1 3	+==	3	1	2	3	3
CO5. 3	3	2	1	1	2	3	3	1 3	13	13	<u> </u>			•

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

	Detailed Syllabus: BL101 Biology Laboratory - I	No of	(0(0)
S.	Experiment .	Lab	No.
I	Introduction to Biology laboratory: Laboratory safety, calibration of instruments, introduction to general laboratory instruments their working	5	1
П	Introduction to Light Microscopy Micrometry: Measuring size of microscopic	10	2
III	specimens. Staining and Observing: human cheek cells, plant cells. Study morphological characteristics of S. cerevesiae, differentiating, dead v/s live cells	15	3
IV	Plant anatomy Relationship between plant anatomy and habitat. Transverse section of dicot & monocot stem, root, leaf and flower. Observing and understanding types shapes and patterns of leaves.	15	4
V	Staining human blood cells: To observe human blood cell types by differential staining, Haemocytometery.	15	5

Integrated M.Sc. Semester - II Semester Program Subject 🐇 🔻 n Integrated M.Sc. Botany Course Code 🤲 Course Title Course Type B-201 Biology -II [Introductory Biology-II] Core Credit ∴ Hours Per Week(L-T-P) L 2 3 0 CLA -Maximum Marks ESE. 100 40

Learning Objective (LO):

It will provide insight of cell structure, functioning and metabolism. Progress in medicine, agriculture, biotechnology, and various other biological domains has led to enhancements in the quality of life.

Course Outcomes (CO):

	Outcomes (CO).	
(CO)	Expected Course Outcomes	(e) (
No	At the end of the course, the students will be able to:	
1.	Students will be able to have a base knowledge about cell structure, function and role of	U
	biological molecules in regulating the basic mechanism of a cell.	

Soldier -

con

2.	Understanding the concept of genetic material and gene regulation	U
3.	Knowledge about structure and function of essential and non-essential proteins	E
4.	Know the process of Cell Signalling.	An
5.	Fundamentals of biotechnology and recombinant DNA technology.	C

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	PSO PSO															
	1	2	3	4			_		9	10		136.02	2	3 🐃	44	5
CO1	3	3	3	2	2	3	3	2		3	3	3	3	2	2	3
CO2	3	3	3	2	2	3	3	2	-	3	3	3	3	2	2	3
CO3	3	3	3	2	2	3	3	2	-	3	3	3	3	2	2	3
CO4:	3	3	3	1	1	3	2	3	-	3	3	3	3	2	3	3
CO5	3	3	3	3	2	3	3	2	3	3	3	3	3	2	3	3

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 201 Biology II (Introductory Biology-II)

Unit 2	Toples	No. of	(CO)
I	Nucleic acids: DNA as the carrier of genetic information, Building blocks-nucleosides, nucleotides, DNA and RNA structure, types and function, chromatin structure, genes, repetitive DNA sequences.	8	1
II	Gene expression: Overview, genes regulatory elements, transcription mechanism in prokaryotes and eukaryotes (a comparison), Reverse transcription, genetic code.	7	2
III	Protein Structure and Function: Building blocks amino acids, peptides, secondary structure, three dimensional structure, membrane proteins, miscellaneous proteins, enzymes.	10	3
IV	Cell Signaling: Overview, signaling via hydrophobic molecules, signaling via ion channels, Signaling via G protein coupled receptors, signaling via cell surface enzymes, intracellular signalling.	10	4
V	Biotechnology:DNA cloning, Uses of recombinant DNA technology, Polymerase chain reaction (PCR), Production of recombinant proteins and SDS PAGE. Classification of living things: Classification and domains of life, overview of taxonomy of plants, animals and microorganisms.	10	5

BOOKS SUGGESTED:

Sr.no.	Author	Book
1.	B Alberts, A Johnson, J Lewis, and M Raff	Molecular Biology of the Cell
2.	JD. Watson, T A.Baker, S P. Bell, & A Gann	Molecular Biology of the Gene (6th Edition)
3.	John Wilson and Tim Hunt (2007)	Molecular Biology of the Cell:The Problems
	Benjamin Lewin (2007)	Genes IX (Lewin, Genes XI)

Integrated M.Sc. Semester - II

	2-1-V-B-1-1-1		
Program "	Subject	Year	Semester
Integrated M.Sc.	Botany	1	II

19

we

Course Code			se Title ental Studies-11	Additional
ES-201		Environna	Hours Per Week (L-T-	P)
A Section 1	-	·L	T	O
2 Maximum Mark		2	CIA 0	ESE
100	5		60	40

Learning Objectives (LO):

Environmental studies foster awareness about biodiversity and both renewable and nonrenewable resources in a particular region. particular region. This involves assessing the available resources and need to maintain a balance.

rse Outcomes (CO):	C. C. C. C. C. C. C. C. C. C. C. C. C. C
Expected/Course Outcomes	(CIL
At the end of the course, the students will be able to	
organisms we need to produce food, medicines, clothing, and other materials. Students will	E
To describe the main pollutants and their effects on human health. To develop an activity	An
Understand waste management vs. waste reduction. Define the concept of integrated waste management.	С
Define 'population growth' list causes and issues related to population growth. Analyze	Ap
Evaluate all the environmental factors considering with at all points such as technical, social, legal and economical aspect.	E
	Expected Course Outcomes. At the end of the course, the students will be able to. Students will realize that people are dependent on intact habitats that sustain the various organisms we need to produce food, medicines, clothing, and other materials. Students will learn about certain species roles in an ecosystem. To describe the main pollutants and their effects on human health. To develop an activity where the student puts into practice the knowledge acquired. Understand waste management vs. waste reduction. Define the concept of integrated waste management. Define 'population growth' list causes and issues related to population growth. Analyze population changes in specific countries. Evaluate all the environmental factors considering with at all points such as technical, social,

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	35949417	POs														
· · •	1	2	3	4	5	6	7	8	* 9	10	11	1	2	3	4	5
CO1	3	3	3	3	3	3	2	3	2	3	3	3	3	2	2	3
CO2	3	3	3	3	3	3	2	3	2	3	3	3	3	2	2	3
CO3	3	3	3	3	3	3	2	3	2	3	3	3	3	2	2	3
CO4	3	3	3	2	2	3	2	3	2	3	3	3	-	1	1	3
CO5 ***	3	3	3	1	2	3	2	1	2	3	3	3	1	1	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: ES 201 Environmental Studies-II

Unit No.	Topics	
I	Biodiversity and its Conservation: Introduction- Definition: genetics, species and ecosystem diversity. Bio geographical classification of India. Value of biodiversity: consumptive use productive use, social, ethical, aesthetical and option value. Biodiversity at global, National and local levels. India as mega-	Ţ

	diversity nation. Hot-spots of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: in situ and ex-situ conservation of biodiversity.	·	
II	Environmental pollution. Definition Causes, effects and control measures of a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Nuclear hazards.	6	
111	Solid waste management: Causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies Disaster management: floods, earthquake, cyclone and landslides.	6	3
IV	Human population and the Environment: Population growth, variation among nation. Population explosion- Family welfare programme. Environment and human health. Human Rights.	6	4
V	Social Issues and the Environment: From unsustainable to Sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people, its problems and concerns. Case studies. Environment ethics: Issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Wasteland reclamation. Consumerism and waste products.	6	5

BOOKS SUGGESTED:

	120000000000000000000000000000000000000	
S. N.	Author	itite
1.	Agarwal K.C.	Environmental Biology 2001
2.	Bharucha Erach	The Biodiversity of India
3.	Bruinner R.C.	Hazardous Waste Incineration, 1989
4.	Bharucha E.	Textbook for Environmental Studies for undergraduate courses
5.	Begon M., Town C.R., Harper J.L.	Ecology From Individuals to Ecosystems

Integrated M.Sc. Semester - II

			De. Demester – II				
Program	ojek izij	Subject	Year	Semester + :			
Integrated M.Sc.		Botany	l	II			
Course Code		Cour	se Title	Course Type			
BL-201		Biology L	aboratory – II	Core			
Credit			Hours Per Week (L-T-	-P)			
		L	$T_{x,y}$	$P_{i,j} = P_{i,j}$			
2		-	•	4			
. Maximum Mark	\$ 12		CIA!	r in the ESE:			
100			60	40			

Learning Objective (LO):
Students will have the basic instrumentation used in biology laboratory. They will be able to Design and critically assess the scientific investigations. It will also demonstrate critical thinking skills.

Course Outcomes (CO):

		(c)L
No.	Arithe end of the course, the students will be able to: Arithe end of the course, the students will be able to: Gain the proficiency in a wide range of experimental instruments and methods in biology including Micro-Pipettes, Tissue Homogenizer, Electrophoresis apparatus, Colorimeter & Ultraviolet And Visible (Uv-Vis) Absorption, Laminar air flow system, Centrifuges, Spectrophotometer, Sonicator, PCR and Real-time PCR, Gel Documentation system and	An
-	various Incubators	AP
2.	Develop a deep understanding of the principle of instruments, and also gaining practical	
-	EXPERIENCE IN MORITING I CONTINUES INC.	AP
3.	Able to observe Microscopic cells and even measure their size and count the number.	
	Unserve the dividing calls and differentiate between the cells using various statutus mountains	AP
4.	Learn to prepare different kinds of growth media to isolate various microbes, and then	1 444
	Drimary characterization	1 A D
5.	Gain practical experience of extraction, estimation and separation of major biomolecules like	AP
L	Carbohydrate, protein content, lipid.	<u> </u>

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO		POS														
CO	1.02	2	3	4	5	6	7	8	9	10	11	1000	2	3	4	5
CO1	3	3	3	3	2	2	3	1	3	3	3	3	3	3	3	3
C02	3	3	3	2	2	1	2	1	3	3	3	3	3	3	3	3
CO3	3	3	3	2	2	i	3	1	3	3	3	3	3	2	-	3
(CO4*****	3	3	3	-	2	1	3	1	3	3	3	3	3	3	3	3
CO5 (#20/	3	3	3	1	2	1	3	1	3	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL201 Biology Laboratory - II

o: No.	: Disperiment	No. of Lab	(O) No.
1	Use and maintenance of Instruments: Micro-Pipettes, Tissue Homogenizer, Electrophoresis apparatus, Colorimeter & Ultraviolet And Visible (Uv-Vis) Absorption, Laminar air flow system, Centrifuges, Spectrophotometer, Sonicator, PCR and Real-time PCR, Gel Documentation system and various Incubators	10	1
II	A demonstration of polymerase chain reaction on thermal cycler. A demonstration on SDS-PAGE technique and DNA gel electrophoresis.	8	2
Ш	Microscopic observation Bacterial cell counting using Neubauer chamber, mitosis in onion root tips, Gram Staining: To differentiate bacteria cells by Gram staining.	15	3
IV	Microscopic observation and comparative study of various microbes, and their primary characterization.	12	4
V	Qualitative estimation biomolecules like Carbohydrate, protein content, amino acid, DNA, RNA.	15	5

Integrated M.Sc. Semester - III

3	Subject	Year	Semester : (
Integrated M.Sc.	Botany	2	III

MA

Copin .

con

Course Code		Cour	se Title	Course Type				
CB-302		Bioch	iemistry-l	Core				
Credit			Hours Per Week (L-T	-P)				
	30112	L.	Property Torres		$P_{(n)} = r^{\frac{n}{2}}$			
4		3	1		0			
Maximum Mark	5		CIA	12 72 3	ESE			
100			60	40				

Learning Objective (LO):

Biochemistry combines biology and chemistry to study living matter. It powers scientific and medical discovery in fields such as pharmaceuticals, forensics and nutrition. With biochemistry, students will study chemical reactions at a molecular level to better understand the world and develop new ways to harness.

Course Outcomes (CO):

	Cuttomes (CO).	Para de Propagadada Servicios
CO No.	Respected Course Outcomes Anthreenth on the course, the students will be able to	(C)L
1.	To define the pH scale as a measure of acidity of a solution. Tell the origin and the logic of using the pH scale	Ap
2.	Describe the different types of simple and complex carbohydrates. Describe the functions of carbohydrates in the body. Describe the body's carbohydrate needs and how personal choices can lead to health benefits or consequences.	Ap
3.	Recognize the different types of lipids. Distinguish saturated from unsaturated fatty acids. Recognize lipids as important constituents of membranes.	E
4.	To understand how enzymes function so that we can better understand the function of our cells and treat diseases.	An
5.	Be aware, on a basic level, of how the structure of a protein can influence its interaction with other biomolecules.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	C. X. S. J.		man and Market	146403	R 1007	PSO *										
	1.3	2*	3	4	5	∞6.	7	8	9	10	%11 0	្នាន	2	≥3⊗	×:4	′′5
CO1	3	3	3	3	3	3	2	3	2	3	2	3	3	3	2	3
CO2	3	3	2	2	3	2	2	2	-	2	2	3	3	3	2	3
CO3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	2	3
CO4	3	3	2	2	3	2	2	2	-	2	2	3	3	2	2	2
CO5	3	3	2	2	3	3	2	2	-	3	2	3	3	2	2	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: CB 302 Biochemistry-I

Unit. No.	Topics	นัก.ดีที่ เฉาเทยมีเ	(Č(0) No.
I	General biochemistry concepts: The concept of pH, dissociation and ionization	10	1
	of acids and bases, pKa, buffers and buffering mechanism, Henderson		
	Hasselbalch equation, dissociation of amino acids and determination of pKa.		
П	Chemical structure of: carbohydrate, lipids, nucleic acids, proteins. Properties	10	2

اس

	and classification of carbohydrates-monosaccharides, di-, oligo- and polysaccharides, cellulose, lignin, cell wall, Sugar derivatives, Glycosidic		
	polysaccharides, centilose, fighth, out	10	3
III	Bonds. Enzymes: characteristics, nomenclature and classification. Mechanism of enzymes: characteristics, nomenclature and classification.		
111	enzyme action, enzyme kinetics, enzyme inhibition and regulation.	15	4
īV	enzyme action, enzyme kinetics, enzyme inhibition and regulations: fatty acid, Structure and Functions of Lipid: General properties; Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications: fatty acid, Structure and Functions of Lipid: General properties, Classifications of Classifications of Classification		1
	Structure and Functions of Lipid: General properties, Classifications, fats, oils, waxes, cholesterol, phospholipids, glycolipid, glycocalyx, Vitamins,		
	Hormones	15	5
V	Protein structure and function: levels of structure of protein, Classification of		
	proteins-globular and fibrous, Protein folding and modification, proteolysis,		
	ubiquitin- proteasome.	L	

UUa_	WO DOCCESTED:	
SNo	Author	Book
1	D. L. Nelson & M. M. Cox	Lehninger Principles of Biochemistry
2	Stryer L (1995)	Biochemistry, 4 th edition,
3	Starzak, Michael E.	Energy and Entropy equilibrium to stationary states
4	J. McMurry (1999)	Fundamentals of General Organic & Biological Chemistry

 integrated M.S	c. Semester - III	
Subject	Year	Semester
 Botany	2	m
Cour	se Titlê	Course Type
Cell 1	Biology -I	Core
Ballet Maria (A)	Hours Per Week(L-T-F	P), 11 - 15 - 25 - 25 - 25 - 25 - 25 - 25 -
L	Tarana	$P \mapsto_{\mathcal{B}} \mathcal{A}_{\mathcal{B}} \mathcal{A}_{\mathcal{B}}$
3	1	0
1.1.2	CIA	ESE .
	60	40
	Subject Botany Cours Cell	Botany 2 Course Title Cell Biology -I Hours Per Week (L-T- L T 3 1

Learning Objective (LO):
Cell biology aims to understand the structure and physiological function of individual cells, how they interact with their environment, and how large numbers of cells coordinate with each other to form tissues and organisms.

Course Outcomes (CO):

	Careconico (CO)	
(CO)	Expected Course Outcomes	(C)L -I
No.	A) the end of the course, the students will be able (o)	
1.	Students will understand the structures and purposes of basic components of prokaryotic and	U
	eukaryotic cells, especially macromolecules, membranes, and organelles	1
2.	Describe how organisms use physical phenomena to actively transport nutrients. Define	C
L	osmosis, diffusion and semi-permeable membranes and understand how organisms use them	1

3.	Identify organelles in a cell and their function. Students will understand how these cellular components are used to generate and utilize energy in cell	E
4.	Describe the significance of different cytoskeletal components in homeostasis and disease as well as in different cell types.	Ap
5.	Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease.	An

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	PSO															
		2	3.	4	5	6	7	8	9	10	1.11	78120	2	3./	4	5
(CO)	3	3	3	3	3	2	2	1	2	3	2	3	3	3	2	3
CO2	3	3	3	3	2	2	2	ī	1	2	2	3	3	3	2	3
CO31	3	3	3	2	3	1	2	1	_	2	2	3	2	3	3	3
CO4	3	3	3	2	3	1	2	1	-	2	2	3	2	3	2	3
CO5	3	3	3	1	3	1	2	1	_	2	2	3	3	2	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

	Detailed Syllabus: B 301 Cell Biology -I		
Unit No.	Topics	No of	(O) 20:
1	Visualization of cell- History of cellular imaging; principles and applications of light microscopy, Different microscopic techniques for imaging cells-phase contrast, confocal, SEM, TEM.	10	1
II	Membrane system: The cell membrane and its structure, Models of the biomembrane: Charles Overton's "Lipid Membrane", Lipid monolayer model of Irwing Langmuir, Lipid bilayer model by Gorter and Grendel, Protein containing lipid bilayer model of Daveson and Danielly, David Robertson's direct observation of the membrane, Fluid Mosaic model of Singer and Nicholson, Constituents and fluidity of plasma membrane, Transport across membrane, Ion channels.	10	2
Ш	Cellular organelles and their functions: Mitochondria: Structure of mitochondria, Different enzymes and their location, Electron transport complexes, ATP synthase, Mitochondrial DNA, Structure of chloroplast, Protein complexes and photosynthetic electron transport chain, DNA of the chloroplast, Structure and functions of the ribosomes, Endoplasmic reticulum, Golgi body, Lysosomes and Nucleus.	15	3
IV	Cytoskeleton, cilia and flagella: Structure and functions of Microtubules, microfilaments, and Intermediate filaments. Structure and function of tubulin, actin Molecular motors-structure and mechanisms of kinesins and dyneins. Myosin motor protein. Cilia and flagella: structure and functions and mechanism of movement.	15	4
V	Replication and Maintenance of the genome: DNA replication, DNA damage and repair, DNA rearrangements.	10	5

BOOKS SUGGESTED:

			Brinci	ples of Biochem	1501.5
	D. L. Nelson & M.	M. Cox	T.CHIII.		
			Biochemistry	D'alogu	
2	Stryer L (1995		Cell and Molecul	ar Biology	
1	Gerald Karo		Con		

		Integrated M.	Sc. Semester – III Year	Semester
· Program	4.	Subject	7 cai	III
Integrated M.Sc.		Botany	2	Course Type
Course Code			se Title	Core
BL-301		Biology	Laboratory	D)
Credit			Hours Per Week (L-T-I	Post with
		L	T is	6
3		-	•	ESE
Maximum Mark	S .		CIA	40
100	,		60	1.0

Learning Objective (LO):

Study of biological phenomena at cellular and molecular level will be studied to gain knowledge about the principles that govern complex biological systems. It provides the information on concept of biochemical calculation and understands the physiological and biochemical significance of enzymatic reactions. This course will also help the student to know the clinical aspects of various disorders due to deficiency of nutrients.

Course Outcomes (CO).

ourse	Outcomes (CO):	
No	Especied Course Outcomes At the end of the course the students will be either to:	.@L
****	Additional of the course state state is supplied to the course state of the course sta	
i	Deep knowledge of pH, pKa, Buffers, and buffering mechanisms	AP
	Proficient in Extraction and estimation of total free amino acids by ninhydrin reagent, of acid value, Iodine number, Saponification value, Peroxide value in unsaturated lipids	AP
3	Depth knowledge of the Carbohydrate extraction, estimation and identification from various sources like fruit sample, potato starch, qualitative tests of carbohydrates, identification by anthrone method, thin layer chromatography	
4	Apply enzymatic reaction; know the effects of pH, temperature and inhibitors or enzyme kinetics. Develop expertise on enzyme catalyzed reaction	AP
5	Understanding the practical insights into the formation of capsule, cell wall, lipid granules, metachromatic granules, endospores, Cell motility, Subcellular fractionation western blotting and meiosis.	AP

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO/	25.5	POs														
CO	1	2	3	4	5	6	7	8	9	10	11	1	12	3	4	5
CO1	3	3	3	2	2	3	3	3	2	3	2	3	2	3	2	3
CO2	3	3	3	2	2	2	2	3	5	2	2	2	12	13	1-2	13
CO3					f-	F	f	 -	۴—			P-	 }	1-	1 2	11

26

3	3	3	2	2	2	2	2	2	2	2	3	2	2	2	2
CO4: 3	3	3	2	2	3	3	3	2	3	2	3	3	3	2	3
CO5, 3	3	3	2	2	2	2	2	2	2	2	3	2	2	2	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL301 Biology Laboratory

Color Service	Detailed Synabus: BL301 Biology Laboratory		
No.	Experiment	No.oft Lab	(60) Noa
I	Biochemical calculation: Concept of pH & Buffers, Hydrogen ion concentration in solution, Inorganic ion concentration in solutions, Inorganic Buffers and Biological fluids, Henderson-Hesselbach equation, Strong acid strong base titration, weak acid strong base titration, Amino acid titration, determine the pka value of the provided amino acid solutions using titration curve. Identify the amino acids using the reference table on the basis of pka values obtained.	15	1
П	Extraction and estimation of total free amino acids by ninhydrin reagent Estimation of acid value, Iodine number, Saponification value, Peroxide value in unsaturated fats and oils	20 .	2
III	Carbohydrate extraction, estimation and identification Extraction of carbohydrates from various sources like fruit sample, potato starch, qualitative tests of carbohydrates, identification by anthrone method, thin layer chromatography	15	3
IV	Enzyme kinetics Enzymatic reaction, determination of Vmax and Km for individuals salivary amylase, effects of pH and temperature on enzyme kinetics, Effect of inhibitors on enzyme kinetics, study an enzyme catalyzed reaction using hydroquinone as a substrate and peroxidase extracted from cabbage.	20	4
V	Cell staining — capsule, cell wall, lipid granules, metachromatic granules, endospores, Cell motility, Subcellular fractionation of mouse liver tissue, page & western blotting Immunoflourescence of cytoskeleton & nuclear proteins.	20	5

Integrated M.Sc. Semester - IV

The second secon	and the second discovery residen			
Program		Subject	Year	Semester
Integrated M.Sc.		Botany	2	IV
Course Code		Cour	sé Title	Course Type
B-401		Cell I	Biology -II	Core
Credit			Hours Per Week(L-T-)	P)
17.		in Language	Т,	Programme
4		3	1	0
Maximum Marks			CIA	ESE
100			60	40

Learning Objective (LO):

27

لمن

This course will help in broadening the knowledge of the biological functions of all living beings. It will provide deep knowledge signal transduction, cell division etc.

Cou

rse Outc	omes (CO):	CL
CO No.	Expected Course Outcomes Authorized of the course, the students will be able to:	E
1.	Authorend of the course, the students will be able to. Students will able to describe cell junctions found in plant cells (plasmodesmata) and animalcells (tight junctions, desmosomes, gap junctions).	Ū
2.	Understand the basic principles of signal transduction incentarion, signal integration concepts of response specificity, signal amplitude and duration, signal integration	
3.	and intracellular location. Explain how cell division functions in reproduction, growth, and repair.	E II
4.	1 Year 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- C
5.	Techniques are used to study the physiological properties of cells, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		Post - Carlos Carlos Ros - Carlos Car														
	60 - 1 0 30	2	3	4	5	- 6	7	8	9	10	11-	ាេ	2	∴3	4	5
CO1	3	3	3	1	3	1	2	1	-	2	2	3	3	3	2	3
CO2	3	3	3	3	2	2	2	2	-	3	2	3	3	3	3	3
CO3*	3	3	3	2	3	2	2	2	-	3	2	3	2	3	3	3
CO4	3	3	3	2	3	1	2	1	-	2	2	3	2	3	2	3
CO5	3	3	3	3	3	1	2	1	2	2	2	3	3	2	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 401 Cell Biology -II

	Detailed Syllabus: B 401 Cell Biology -11		F. Carlotte and P. Carlotte and
Unit No.		No. of Decimes	
I	Cell Junctions, Cell Adhesion, and the Extracellular Matrix: Introduction, Cell Junctions, Cell Cell Adhesion, The Extracellular Matrix of Animals, Extracellular Matrix Receptors on Animal Cells. Integrins, Selectins, and other proteins involved in intercellular contacts. The Plant Cell Wall	10	l
П	Cell signaling: 1. Introduction: Components involved in signaling, Types of signaling, Three Major Classes of Signaling Receptors: Ion Channel linked, G protein coupled receptors (GPRs), Enzyme Linked receptors: Tyrosine Kinase Receptors, other enzyme linked receptors, Second Messengers: cAMP, cGMP, IP3 and DAG, Ca+2, PIP3. Signaling Cascades.	15	2
III	Cell cycle and Cell division: Mechanisms and regulations of cell division, Cyclins and CDKs, Key events in G1 Phase, S-Phase, G2 Phase and Mitosis. Cell cycle checkpoints, Molecular mechanism of cytokinesis, uncontrolled cell division and cancer.		3
īV	Types of cell death: Apoptosis-Molecular mechanisms of apoptosis; Key	10	4

	proteins involved in apoptosis: Pro- and anti-apoptotic proteins. Necrosis, Anoikis, Oncosis, autophagy.	1	
1 .	Techniques in Cell biology: Cell fractionation, DNA libraries, DNA transfer into eukaryotic cells and Mammalian embryos, Nucleic acid hybridization, Purification of nucleic acid, Isolation and fractionation of proteins.	10	5

BOOKS SUGGESTED:

S:No.	Author	Book
1	Alberts et al.	Molecular biology of the Cell
2	Alberts, Bray et al	Essential Cell Biology Garland, Publication New York 1997
3	James E. Darnell, Harvey F. Lodish, and David Baltimore	Molecular Cell Biology
4	Geoffrey M Cooper	The Cell, 2nd edition, A Molecular Approach
5	Gerald Karp	Cell and Molecular Biology

Integrated M.Sc. Semester - IV

		Integrated M	.Sc. Semester – IV				
Program	-#12F#	Subject 💮	Year Year	NÆ	* Semester		
Integrated M.Sc.		Botany	2		IV		
Course Code		Cour	se/Title		Course Type		
B-402		Bioch	emistry-II	Core			
Credit			Hours Per Week(L-T-)	P) [tter samme samme		
		$\cong L_{\mathbb{Z}_{p,n}^{(r)}} \oplus \mathcal{L}_{\mathfrak{p},k}$	T		$\{j_1,j_2\}, \{j_2,j_3\}, P\in P_{i_1,i_2}, \{j_2,j_3\}, \dots \}$		
4		3	1		0		
Maximum Mark			CIA		ESE		
100			60		40		

Learning Objective (LO):

To unravel the complex chemical reactions that occurs in a wide variety of life forms which will provide the basis for practical advances in medicine, veterinary medicine, agriculture, and biotechnology.

Course Outcomes (CO):

	Outcomes (CO):	
CO-	Dexpected Course Outcomes	(c)L
No.	Autioentos inecouses the sindents will be able to:	
1.	Evaluate the role of conversion of energy for cellular activities in any biological system	E
2.	Describe the metabolism of carbohydrates, lipids, proteins and amino acids.	An
3.	Write chemical reactions for the individual steps in each pathway. Identification of the levels of biological organization.	E
4.	To know the digestion and absorption of carbohydrates. It knows where the products from the carbohydrate metabolism intermediate products are used in the body.	Ap
5.	Write the chemical reactions involved in biochemical pathways that produce ATP, such as citric acid cycle and electron transport.	C

Soft of the second seco

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

POCO					POs		-	818 Q F	0	10		37 L 10 C	4			
	1	2	√ 3	4	5	_6_	1/3	\$ 0 O	~	- 2	2	3	3	3	3	3
CO1	3	3	2	3	3	3	3	2		- 3		3	3	2	3	3
CO2	3	3	2	2	2	3	3	2	1			-	3	2	2	3
CO3	3	3	2	2	2	2	2	2		3	1 2		3	2	2	3
CO4	3	3	2	2	2	2	2	1		2	12	-	1-	1 7	2	3
CO5	3	3	2	1	2	2	2	1	<u> </u>	2	2	3	13_	12	L	1

Unit No.	Detailed Syllabus: B 402 Biochemistry-11 Topics	No: of Lectures	
I	Bioenergetics, and Basic concepts of Metabolism: catabolism and anabolism. Carbohydrate metabolism: Glycolysis and regulation, Feeder pathways of glycolysis, cori cycle, oxygen debt, Pasteur effect, Fates of pyruvate, ATP, NADH	15	1
II	TCA cycle, regulation of isocitrate, Gluconeogenesis, Glycogenolysis, Pentose phosphate pathway, Glyoxalate cycle. ETC, inhibitors of ETC, Oxidative Phosphorylation, chemiosmotic theory	15	2
III	Lipid metabolism: B oxidation of unsaturated and saturated fatty acids, propionyl Co A metabolism, significance of ketone bodies, biosynthesis of palmitate, Absorption and transport of fats.	10	3
IV	Amino acid Metabolism: Transamination, Direct amination, Fate of amino acid skeleton, urea cycle, precursors of compounds other than proteins.	10	4
V	Nucleotide Metabolism: Salvage and De novo pathways of purines and pyrimidines, formation of deoxyribonucleotides, origin of thymine	10	5

BOOKS SUGGESTED:

S.No.	Author	Book
1	D.L. Nelson, M.Cox	Lehninger Principles of Biochemistry
2	Stryer L	Biochemistry
3	Starzak Michael E.	Energy and Entropy equilibrium to stationary states
4	J McMurry	Fundamentals of General Organic and Biological Chemistry (Study Guide)

Integrated M.Sc. Semester - IV

Program	Subject	Year	* Semester :
Integrated M.Sc.	Botany	2	IV
Course Code	Cour	se Title	Course Type

BL-401		Biology	Laboratory	Core
Credit			Hours Per Week (L-T-	P)
		$C_{i,k}(\mathcal{C}_{i,k}(x_i), \mathcal{C}_{i,k}(x_i))$	T, E	P. P.
3		-	•	6
Maximum Mark	S		CIA	ESE
100			60	40

Learning Objective (LO):

Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles.

Course Outcomes (CO):

	Expected Course Outcomes	7670
No.	At the end of the course, the students will be able to	CIL.
	Gain expertise in Isolation and Analysis of Biomolecules like carbohydrate, protein, RNA and DNA estimation	AP
2	Understand the mechanism of Nucleic acid extraction and their quantification. Having the practical knowledge about the ability of DNA to withstand pH and Temperature.	AP
3	Gain expertise on Chromatography (Paper chromatography, Thin layer chromatography, Ion-exchange chromatography, affinity chromatography etc.)	AP
4	Deep understanding of programmed Cell Death, DNA Laddering and Cell death assay	AP
5	Students will able to detectblood group and Rh factor in the blood sample.	AP

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO/CO		POs														
	11200	2	3 ∜	4	5	6	7.	8	9	10.	11	1	2	3	4	5
CO1	3	3	3	2	2	3	3	2	2	2	2	3	3	2	2	2
CO2	3	3	3	2	2	2	3	2	2	2	2	3	3	2	2	2
CO3	3	3	3	3	3	2	3	2	2	2	2	3	3	2	2	2
CO4.	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BL401 Biology Laboratory

SN	Experiment	No. of Lab	CO No:
I	Isolation and Analysis of Biomolecules (i) Carbohydrate estimation by DNSA (ii) protein estimation by Peterson method (iii) RNA estimation by	20	1
	Orcinol method (iv) DNA estimation by DPA method		
П	Nucleic acid extraction - from plant & animal tissue using ethanol	15	2

31

itions – pH and Temperature comatography-chromatography of a C, Gel filtration (c) Ion-exchange aphy	4 //	
	4.7	
Taldaring and Cell death assay	15	4
NA Laddering and Con Livanthers		
oddles and ivielosis using	20	5
nucleus, lysosome and their assay by tochondria), acid phosphatase activity		
	NA Laddering and Cell death assay bodies and Meiosis using lily anthers tor in the blood sample. Isolation of nucleus, lysosome and their assay by itochondria), acid phosphatase activity nucleus) and microscopic observation	hodies and Meiosis using lily anthers tor in the blood sample. Isolation of nucleus, lysosome and their assay by itochondria), acid phosphatase activity

		Integrated M	I.Sc. Semester – V				
Program	55	to the second of	Year Year		Semester		
Integrated M.Sc.		Botany	3		V		
Course Code		Cour	se Title		Course Type		
B-501		G	enetics	Core			
Credit	100		Hours Per Week (L-T-	P).			
	T. 0. 0		Goral Track		P. 3.		
4		3	1		0		
Maximum Mark	S. 7 (*)		ÇIÂ		ESE		
100			60	40			

Learning Objective (LO):

To develop deep understanding of genes and heredity of how certain qualities or traits are passed from parents to offspring as a result of changes in DNA sequence. The causes of important human diseases are being discovered, and therapies developed, based on fundamental genetic investigations.

Course Outcomes (CO):

CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	(IL
1.	Compare and explain the inheritance of germline and somatic mutations. Describe the sequence of events involving DNA in meiosis from chromosome duplication through chromosome segregation.	U
2.	The transmission to the future generation of various traits that are because of alleles at gene loci on a sex chromosome is known as sex-linked inheritance.	An
3.	Understanding of bacterial genetics that allowed researchers to implant foreign DNA in their genome and produce proteins that have benefited humans	С
4.	Understand the link between environment and evolution. Be familiar with the different agents	Ap

And Copyon

cone

	of evolution	
5.	Calculate the measures of the centre of data: mean, median, and mode. Recognize and	An
	calculate the measures of the spread of data; variance, standard deviation, and range.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	POs PSO															
	5.15%	2	3	4	5	6	97 ≥	8	9	10	11	W 140	2	3	4	×.5
(60)	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	3
CO2	3	3	3	2	3	2	3	2	1	3	2	3	3	2	2	2
CO3	3	3	3	2	3	2	3	2	i	3	2	3	3	2	2	3
CO4	3	3	3	2	3	3	3	3	1	3	2	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	3

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 501 Genetics

	Detailed Synabus: B 501 Genetics		Access to the second
Unit No.		ा <u>ज्यकात्स्य</u> इत्यक्त	(0) (0)
1	Overview and Introduction of Genetics: Central Dogma, Genotype and	10	i
	Phenotype, Eukaryotic and Prokaryotic Genes, Forward and Reverse Genetics,		
	Mendelian Inheritance: Law of Dominance, Law of Segregation, Law of		
	Independent Assortment, Deviation from Mendelism: Incomplete dominance,		
	Co-dominance.		
П	Epistasis, Polygeneic Inheritance, Cytoplasmic Inheritance, Linkage and	10	2
	Recombination, Sex Linkage and Sex-Linked Inheritance, Pedigree Analysis		
III	Bacterial Genetics: Transformation, Conjugation, Transduction (Lambda	15	3
	Phage), Human genome and genetics: Elements of human genetics & genetic		
	disorders, Examples from Drosophila, yeast, maize and mouse,	-	1
	Immunogenetics.		
IV	Genes and Evolution: The law of DNA constancy and C value paradox:	10	4
	Numerical and structural changes in chromosomes; Molecular basis of		
	spontaneous and induced mutations and their role in evolution; Environmental		
	mutagenesis and toxicity testing; Population genetics		
V	Biostatistics: Principles and practice of statistical methods in biological	15	5
	research; samples and populations; Basic statistics - average, statistics of		
	dispersion, coefficient of variation; Standard error; Confidence limits;		
	Probability distributions binomial, Poisson and normal; Tests of statistical		
	significance; Simple correlation of regression; Analysis of variance.		

BOOKS SUGGESTED:

S. No.	Author	Book Book
1	E. J. Gardner, D.P Snustad and M. J Simmons	Principles of Genetics
2	Leland Hartwell, Leroy Hood, Michael Goldberg, Ann	Genetics: From genes to genomes
	Reynolds, Lee Silver, Ruth Veres.	
3	Anthony J. F. Griffiths. 2010	Introduction to genetic analysis
5	Marcello Pagano, 2000	Principles of Biostatistics
6	Peter J. Russell	Genetics: A Molecular Approach

33

Integrated M.Sc. Semester - V

	Integrated ivi	V-a	Semester		
Program	Subject	Year			
Integrated M.Sc.	Botany	3	V		
Course Code	Cour	se Title	Course Type		
B-502	Molec	ular Biology	Core		
Credit	rer di	PHours Per Week (L-T-I	የ)		
	L	T.	P		
5	3	2	0		
. Maximum Mark	S	CIA	ESE		
100		60	40		

Learning Objective (LO):

It will provide understanding of how molecules interact with one another in living organisms to perform the functions of life. Give knowledge of Major application of molecular biology are genetic analysis and gene cloning, DNA fingerprinting and forensics, genomics and computational approaches to genetics.

Course Outcomes (CO):

	Outcomes (CO):	
CO No.	Expected Course Outcomes At the end of the course, the students will be able to	(OL
1.	Construct a model of the structure of the DNA molecule. Define key terms associated with the structure of DNA. Identify the four nitrogen bases that compose DNA. Summarize the history of human knowledge about DNA.	ប
2.	Outline the basic steps involved in DNA replication, including major differences between eukaryotes and bacteria. Explain how eukaryotes overcome the difficulty of replicating the ends of linear chromosomes.	U
3.	Understand the purpose of the cell's performing transcription and translation. Predict RNA and protein sequences from a given gene. Analyze the effects of a DNA mutation on the RNA and protein produced from that DNA	An
4.	Gene regulation is necessary for making or synthesizing correct proteins where they are required. So it maintains the stability of the body. Hence, homeostasis is an outcome of gene regulation.	E
5.	State the potential effects of mutations on proteins produced as being beneficial, neutral, or harmful, the outcome of recombination is to ensure that each gamete includes both maternally and paternally derived genetic information	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	200	POs														
20,00	1	2	3	4	5	≥.6	7	8	9	10	11	1.	2	∴3:	, 4	ે5
CO1	3	3	3	3	3	3	3	2	2	3	2	3	3	2	3	3
CO2	3	3	3	2	3	2	3	2	-	3	2	3	3	2	2	3
CO3	3	3	3	2	3	2	3	2	-	3	2	3	3	2	2	3
CO4	3	3	3	2	3	2	3	2	-	3	2	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	3

And Color

cent

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 502 Molecular Biology

No.	Lopics	Rolof Bernice	7.0 (6)
I	Molecular biology an overview: Concept and definition of the gene, complexity of the eukaryotic gene. Structural organization of the DNA in the nuclear material General properties of histones, nucleosomes and solenoid structure, RNAs and their structure & function.	15	1
II	DNA synthesis: The enzymes of DNA replication in prokaryotes and eukaryotes, mechanism of replication in bacteria and viruses, reverse transcriptase, salient features of eukaryotic nuclear and mitochondrial DNA replication.RNA synthesis: The enzymes of transcription in prokaryotes and eukaryotes, mechanism of transcription in bacteria, heteronuclear RNA, post transcriptional processing of RNA, role of ribozymes.	15	2
Ш	Protein synthesis: Concept of the genetic code, structure of t RNA and r RNA, enzymes of translation in prokaryotes and eukaryotes, mechanism of protein synthesis, post translational processing of proteins, translational inhibitors. Protein sorting, Vesicular traffic inside the cells, targeting & degradation	15	3
IV	Gene expression and its characterization: Regulation of gene expression in prokaryotes, eukaryotes, λ phage, structure and mechanism of different operons, Gene regulation during development, Gene function and phenotype loss of function & gain of function, Gene interaction, suppressors & enhancers.	15	4
V	Mutations and their consequences: Definition of mutation, mutagenesis & mutant selection, Alleles, Complementation, Recombination, recombination mapping and mechanism of recombination, Repair of DNA, Transposons & retroposons.	15	5

BOOKS SUGGESTED:

DOOM	SOUGGESTED.	
S. No.	Authoral Cale Control	Book
1	Stryer L	Biochemistry, 4 th edition,
2	Watson J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A. and Weiner, A. M.	Molecular biology of the gene, 4th edition, The Benjamin/Cummings publishing companies
3	Benjamin Lewin	Genes VII, oxford University Press, Oxford
4	Weaver R. F.	Molecular biology
5	Brown T A	Essential molecular biology, vol. I, A practical approach, IRL press, Oxford.
6	Cox Lynne S	Molecular Themes in DNA Replication
7	Gerald Karp	Cell and Molecular Biology

Integrated M.Sc. Semester - V

Program	Subject	Year	Semester
Integrated M.Sc.	Botany	3	V
Course Code	Cour	se Title : 💮 🔆 💸	Course Type * *

35

سی

BO 501	Plant Systemati	cs and Biodiversity	Core				
Credit	L.	Hours Per Week(L-T-I	P = 12.54.84				
5	3	Z GIA▼	ESE				
Maximum Marks 2	- 1	60	40				

Learning Objective (LO):

The primary goal of this course is to let students understand principles of general taxonomy and historical development of taxonomy. The main objective of studying biodiversity is to provide students a global vision of the variety of the state. variety of the plant world.

Course	Outcomes (CO):	-or
CO No	Expected Course Outcomes At the entrothe course, the students will be able to:	
1.	Gaining knowledge of species, their names and phylogenetic relationships which will be helpful for further studies in other disciplines of biology, including conservation biology and nature protection.	U
2.	The main objective of plant taxonomy is to identify characteristics of undiscovered species by comparing with known species, to specify characteristics of recently discovered species, to arrange them in respective 'taxa' after looking at their similarities and to give them scientific names. This is important for conservation efforts, agriculture, and horticulture, as well as for scientific research.	С
3.	Gibi William And And And And And And And And And And	Ap
4.	For understanding the intrinsically-inbuilt plus the externally-imposed variability in and among plants existing in terrestrial, marine and other ecosystem at a specific period of time. Students will be aware of what are the major biodiversity threats.	ប
5.	Knowing the primary and secondary centres of crops across the globe and about crop domestication and its significances.	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	三、原本		Landary.	adstari	POs	N. J. C. B. Y.	1974	3155140	V4 I 10 a41	raka.		54426	GIN MEK	PSO	11502848	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	1.	2	3.	4	5	- 6	7	8	9	10	11	(41)	2	3.3	4	5
CO1	3	3	3	3	3	2	3	2	1	3	2	3	3	2	3	2
CO2	3	3	3	2	2	2	3	2	1	3	2	3	3	2	2	3.
CO3	3	3	3	2	3	2	2	2	1	3	2	3	3	2	2	2
CO4	3	3	3	2	2	2	2	2	1	3	2	3	3	2	3	2
CO5	3	3	3	3	3	2	2	3	1	3	2	3	3	3	1 3	5

'3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BO 501 Plant Systematics and Biodiversity

Ropies Robert Ro

	Biosystematics, Principles of taxonomy, Concept of species and hierarchical taxa, Plant collection, Herbarium preparation, Important herbaria and botanical gardens of the world and India, E-flora, Taxonomic tools; Identification of plants, Keys-Single access and Multi-access.	15	1
II	Plant nomenclature- Principles and rules of nomenclature- Binomial, International Code for Nomenclature of Algae, Fungi and Plants; Ranks and names; Typification, author citation, valid and effective publication, rejection of names, principle of priority and its limitations; Names of hybrids.	15	2
III	Systems of classification-Major plant classification systems, Classification systems of Bentham and Hooker, Engler and Prantl, Hutchinson's and Takhtajan Characteristic features, dendrogram, phytochemistry and cytology in relation to taxonomy	15	3
IV	Study of major families with reference to systematic position and economic importance of dicot- Ranunculaceae, Annonaceae, Solanaceae, Meliaceae, Fabaceae, Cucurbitaceae, Umbelliferae, Asteraceae, Labiatae etc.	15	4
V	Study of major families with reference to systematic position and economic importance of monocot: Orchidaceae, Zingiberaceae, Cyperaceae, Poaceae etc.; Life cycle of typical angiospermic plants.	15	5

BOOKS SUGGESTED:

OOKS SUGGESTED:								
S.No.	Author	Book & Book						
1.	Cecie Starr, Ralph Taggart, Christine Evers, and Lisa Starr	Biology: The Unity and Diversity of Life						
2.	Hawksworth, D. L. & Bull Alan T.	Plant Conservation and Biodiversity. Series: Topics in Biodiversity and Conservation, Vol. 6(Eds.) Reprinted from Biodiversity and Conservation, 16:6, 2007, VIII, 424 p.						
3.	M P Singh	Plant Biodiversity & Taxonomy						
4.	E.O.Wilson, Editor. Frances M. Peter	Biodiversity						
5.	Peter H. Raven, Ray F. Evert, and Susan E. Eichhorn	Biology of Plants						
6.	Simpson, M.G. (2006)	Plant Systematics. Elsevier Academic Press, San Diego, CA, U.S.A						

Integrated M.Sc. Semester - V

	integrated Mi.	.sc. semester – v			
	Subject	- Year ⊮'∗∵	Semester Semester		
	Botany	3	V		
	Cour	se Title 🕡	Course Type		
	Botany	Laboratory	Core		
		Hours Per Week (L-T-	P))		
	L'.:	To see the	P		
	-	-	10		
\$		CIA	ESE		
100		60	40		
		Subject Botany Botany L	Botany Laboratory Hours Per Week (L-T- L T - CIA		

Soften and 3

Develop awareness and applications of various molecular biology techniques, preparation, and storage for chemicals. To aware students about genetics and its real life applications.

CO	Outcomes (CO): Expected Course Outcomes At the end of the course, the students will be differed.	(CL)
1	Develop a strong foundation in the application of Bacterial Genetics Transformation, Conjugation, Transduction, Transposition, α Complementation, Karyotyping.	An
2	Understand the plant systematic and Biodiversity in surrounding area and identifying different monocot and dicot plants.	
3	Develop a strong foundation on general Molecular Biology Laboratory Procedures like DNA extraction, detection and amplification using PCR	
4	Develop expertise on Plasmid isolation and Purification, RE Digestion & Detection of the RE-digested product Using restriction mapping to teach basic skills in the molecular biology, Blunt end cloning (after Ligation), Preparation of competent cells & Transformation of E. coli cells with plasmid	E
5	A deep understanding on protein extraction & separation using polyacrylamide gel electrophoresis SDS-PAGE, Western blot analysis	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	POs															
	3.1	2	3	4	3 5	6	1.7.3	- 8	9	10	211	~1/	2	3	4	5
COl	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3
CO2	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3
CO3	3	3	3	3	3	2	3	3	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO5.	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BOL501 Botany Laboratory

S. No.	Texperiments	No. of Lab	CO No.
I	Bacterial Genetics E. coli Transformation, Conjugation, Transduction Phage Titration, Transposition, a Complementation, Karyotyping	25	1
П	Plant Systematics and Biodiversity Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus by species area curve method. Methods of non destructive field collections and documentations Mounting of a properly dried and pressed specimen of any wild plant with herbarium label Study of vegetative and floral characters of the selected dicot and monocot families and identification upto families of local available flora. Field survey of a part of town or city to make the student aware of the diversity of plants in urban area.	35	2
III	General Molecular Biology Laboratory Procedures Extraction of	35	3

	genomic DNA Using Kit method & By conventional Ethanol Precipitation method, Detection of Nucleic acids (AGE), Polymerase Chain Reaction (PCR) & Detection of the PCR product and its purification		
IV	Plasmid isolation and Purification, RE Digestion & Detection of the RE-digested products using restriction mapping to teach basic skills in the molecular biology, Blunt end cloning (after Ligation), Preparation of competent cells & Transformation of E. coli cells with plasmid	30	4
V	Protein extraction & separation using polyacrylamide gel electrophoresis SDS-PAGE, Western blot analysis to illustrate relative control levels of the lac and ara promoters in <i>E. coli</i>	25	5

Integrated M.Sc. Semester - VI

		integrated M.	3c. Semester – VI			
Program		Subject	Year	Semester Semester		
Integrated M.Sc.		Botany	3	VI		
Course Code	- 1	· Cour	se Title	Course Type		
во 601		Microbiology, Ph	ycology and Mycology	Core		
Credit			Hours Per Week(L-T-F	(\mathbf{P})		
		: L; :: :: :: :::::::::::::::::::::::::	T	$(\mathbf{P}_{\mathbf{p}}, \mathbf{P}_{\mathbf{p}}, \mathbf{P}_{\mathbf{p}})$		
3		2	1	0		
Maximum Mark	S		CIA:	ESE		
100			60	40		

Learning Objective (LO):

This course will provide basic understanding of microbial diversity bacteria algae and fungi. It will be helpful in understanding the structural similarities and differences among various physiological groups of bacteria. Phycology will give understanding of forms of algae, from very tiny microorganisms that float through the ocean to huge forests of seaweed.

Course Outcomes (CO):

	Outcomes (CC).	
(CO) +-	Expecied Course Outcomes	C)L
No.	Anthe end of the course, the students will be able to	
1.	Exploring history and development of microbiology, characteristic features of prokaryotes (Bacteria and Archaea) and bacterial classification.	U
2.	Learning about microbial isolation, identification and cultivation techniques, their mode of nutrition and growth and also the ways to control their growth by physical and chemical means.	U
3.	For educating students about strategies of signal transduction, communication, adhesion and invasion of bacteria. To also aware them about bioterrorism and metagenomics.	Е
4.	Studying general characteristic features and life cycle of algae and their economic importance.	Ap
5.	Knowing the general features, reproduction and life cycle of common fungi. To study	Ap

symbiotic relationship of fungi with other organisms such as lichen and mycorrhiza in detail.

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course: PSO POs POCO 6. CO1 3 CO2 3 CO3 CO4 (COS=3) : 3

Detailed Syllabus: BO 601 Microbiology, Phycology and Mycology

Unit No.	Topics	No. of Lectures	(c(0) No.
I	History of Development of Microbiology, Bacterial classification, Prokaryotic	9	1
	Structure &Function, Gram Negative Bacteria, Gram Positive Bacteria &		
	Archaea.		
II	Microbial Nutrition, Microbial Growth, Control of Microbes. Isolation of a	9	2
	broad range of non-pathogenic bacteria from natural sources, Selective and		
1	Enrichment techniques, Microscopic, biochemical, and molecular		
	identification.		
111	Signal transduction in bacteria (Quorum Sensing), Bacterial cell-cell	9	3
1	communications and biofilm formation, Strategies for bacterial adhesion and		
	invasion, bioterrorism, Metagenomics		
IV	Algae- General characteristics, Ecology and distribution, Range of thallus	9	4
1	organization and Morphology and life-cycles of common algae-Nostoc,		
	Chlamydomonas etc., Economic importance of algae.		
V	Fungi- General characteristics, ecology and significance, range of thallus		5
1	organization, cell wall composition, nutrition, reproduction and life cycle of		
1	common fungi Rhizopus, Penicillium etc. Brief account of lichens, Mycorrhiza		
	and their significance.	<u></u>	<u> </u>

BOOKS SUGGESTED:

S.No.	Author Author	Book
1	Thomas D Brock	Brock's Biology of Microorganisms
2	Patrick R Murray	MedicalMicrobiology
3	Willey, Joanne, Sherwood, Linda, Woolverton, Christopher J.	Presscotts Microbiology
4	Webster, J. and Weber, R. (2007)	Introduction to Fungi, Cambridge University Press, Cambridge. 3rd edition
5	Sethi, I.K. and Walia, S.K. (2011). India Ltd.	Text book of Fungi and Their Allies, Macmillan Publishers
	Kumar, H.D. (1999).	Introductory Phycology. Affiliated East-West Press, Delhi.

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

	T	n	•	"	^	^	_	٠.
1	Lee,	к	. 14.	"	ш	u	x	١

Phycology, Cambridge University Press, Cambridge. 4th edition

	Integrated M.	Sc. Semester – VI	
Program	Subject	Year	Semester
Integrated M.Sc.	Botany	3	VI
Course Code	Cour	se Title	Course Type
BO 602	Biology of	Lower Plants	Core
: Credit		Hours Per Week (L-T-P)	
	- 1 2 3 4 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	The state of the s	The Property Property

Learning Objective (LO):

The major objective of this paper to build up a strong foundation of knowledge of lower plants growing in different habitats. Students will able to understand biology of lower plants such as Bryophytes, Pteridophytes and Gymnosperms.

Course Outcomes (CO):

Course	Outcomes (CO):	
CO -	Expected Course Outcomes Author end of the course, the students will be able to	(CIL
1.	Exploring the structure and function of archegonia and antheridia and also learning their importance in plant reproduction. Understanding adaptation strategies to land and alternation of sexual and asexual phase of plants that helps them to adapt to different environments.	U
2.	Bryophytes are some of the earliest-evolved plants and are precursors to vascular plantsand studyingof bryophytes enables students develop better understanding of their structure, evolution and ecological significance.	E
3.	Pteridophytes produce neither flowers nor seeds, they are sometimes referred to as "cryptogams", meaning that their means of reproduction is hidden. Pteridology helps to understand characteristics and classification of ferns with their ecological and economical importance.	An
4.	Learning characteristic features and reproduction of the gymnosperms (also known as Acrogymnospermae), are a group of seed-producing plants including conifers, cycads, Ginkgo, and gnetophytes.	
5.	Palaeobotany helps in gaining a thorough knowledge of the past climate and ecological systems in which plants were present and helps in understanding the evolution of the plant taxa.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		POs														
	1	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
COL	3	3	3	2	3	2	3	2	2	2	2	3	3	2	3	3
CO2	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3
CO3	3	3	3	2	3	2	3	3	2	2	2	3	3	2	2	3

41

and

					T		1 2	2	2	13	β .	2	1 2	5	
12 COV	 3	2	3	2	3	2	12		<u> </u>	-	2	7	3	₹ 75	-
CO4 3 3	 			2	2	13	3	3	3	3	٧				
CO5 3 3	 3	3	3	14	13	٢	السنسال	L	<u></u>					- Jan	

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

	Detailed Syllabus: BO 602 Biology of Lower Plants	No. of	(CO) "
Unit		Lectures	
No.	Alternation of	9	1
I	General features of archegoniates, Transition to land habit, Alternation of		
	generations	0	2
II	Bryophytes-General characteristics, Classification, Morphology, Range of thallus organization. Life cycle-Riccia, marchantia, Sphagnum. Ecological and	,	
	economic importance of bryophytes (Sphagnum)	9	3
III	Pteridophytes-General characteristics, classification, morphology, anatomy, Reproduction of Psilotum, Selaginella, Equisetum. Ecological and economic importance Pteridophytes (Selaginella, Equisetum)	·	
īv	Gymnosperms- General characteristics, classification, morphology, anatomy and reproduction of Cycas, Pinus and Gnetum. Ecological and economic importance of Gymnosperms.	9	4
V	Introduction to Palaeobotany, Ecological time scale, process of fossilization,	9	5
	Kinds of fossils, Importance of Palaeobotanical studies.		

BOOKS SUGGESTED:

The second second						
S: No.	Authori	Books at the Books				
1.	Vashistha, P.C., Sinha, A.K., Kumar, A. (2010)	Pteridophyta. S. Chand. Delhi, India.				
2.	Bhatnagar, S.P. &Moitra, A. (1996)	Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India				
3.	Parihar, N.S. (1991)	An introduction to Embryophyta: Vol. I.				
4.	Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005)	Bryophyta. Central Book Depot. Allahabad. Biology. Tata McGraw Hill, Delhi.				
5.	Vander-Poorteri 2009	Introduction to Bryophytes. COP.				

Integrated M.Sc. Semester - VI

		integrated Mr.	oc. beinester – vi			
Program		Subject	Year	Semester		
Integrated M.Sc.		Botany	3	VI		
Course Code		Cours	se Title	Course Type		
BO 603		Anatomy o	of Angiosperms	Core		
Credit			Hours Per Week(L-T-F)		
		Mrs.L.	T	P		
4		3	1	0		
Maximum Mark	S		CIA	ESE		
100			60	40		

Soft Goldson

eu/ 4

Learning Objective (LO):

The objective of this course is to enable students to understand the structural organization of angiosperms and their adaptations with respect to diverse environmental conditions. This subject talks about types of tissues, classification of tissue

Course Outcomes (CO):

	Outcomes (CO):	
CO .	Hxpected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	7 3
1.	Knowing about types of tissues, tissue systems and vascular bundles. To also understand plant cellular connectivity via pits and plasmodesmata.	U
2.	For learning about the epidermal tissue system that deals with the protection and coverage of the entire plant body and cell ingrowths. To explain anatomical adaptations of xerophytes and hydrophytes to survive unfavourable environments.	U
3.	To study types of vascular bundles and their role in plant nutrition and also explore structural organization of dicot and monocot root, stem and leaf. Explain about Kranz anatomy and lateral root of plants.	E
4.	To develop understanding of vascular cambium, its structure, types, function and seasonal activity, and also secondary growth in root and stem of plants. To introduce dendrochronology (or tree-ring dating) that is the scientific method of dating tree rings to know the exact year they were formed in a tree.	บ
5.	Learning about the development, composition and characteristics of periderm, rhytidome and lenticels. To also describe secretory system of plants in depth.	E

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	Tell age.	PSO														
	1	2	3	4	5	6	7	8	⊱∴9:	-10	11	1133	2	₹3	4.	5
COI:	3	3	3	2	2	1	2	2	1	2	2	3	2	1	1	2
CO2	3	3	3	2	3	2	2	l	-	2	2	3	2	2	2	2
CO3;	3	3	3	2	3	2	2	ı	-	1	2	3	2	1	2	2
CO4	3	3	3	2	3	1	2	1	2	I	2	3	2	1	1	2
CO5	3	3	3	2	3	2	2	1	-	2	1	3	2	2	1	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BO 603 Anatomy of Angiosperms

	270000000000000000000000000000000000000		
Unit No.	Topics	No. of Lectures	CO No.
I	Classification of tissues-Meristematic and permanent tissues, Simple and complex tissues, tracheary elements and sieve elements, Pits and plasmodesmata	10	1
II	Epidermal tissue system- cuticle, epicuticular waxes, trichomes, stomata, cell wall ingrowths- Adcrustation and incrustation. Anatomical adaptations of xerophytes and hydrophytes	15	2
Ш	Types of vascular bundles, Structure of dicot and monocot root, stem and leaf, Kranz anatomy, lateral root	10	3
IV	Vascular cambium- Structure, function and seasonal activity, Secondary growth in root and stem, Wood (heartwood and sapwood), Ring and diffuse porous wood, Early and late wood, tyloses, Dendrochronology.	15	4
V	Development and composition of periderm, rhytidome and lenticels, Secretory	10	5

In Sign we

system- Hydathodes, cavities, lithocysts and laticifers.

BOOKS SUGGESTED:

_BOOK	S SUGGESTED:	Rook
S.No.	Author	Book Harrourt Academic Press, USA.
1.	Districe W C (2000)	Integrative Plant Anatomy, Halcourt
2.		Plant Anatomy. Pergmon Press, USA
3.	Mauseth, J.D. (1988)	Plant Anatomy. Pergmon Plass, Commings Publisher, USA. Plant Anatomy. The Benjammin/Cummings Publisher, USA.
4.	Esau, K. (1977)	Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi

Integrated M.Sc. Semester - VI

		Integrated M.	Sc. Semester – VI	The second secon		
Program		Subject	Year	Semester		
Integrated M.Sc.	Charles marginists in 1994	Botany	3	VI		
Course Code		Cour	se Title	Course Type		
BO 604		Plant	Physiology	Core		
Credit			Hours Per Week (L-T-	P) 🦠 .		
		L. L. A.	garana (T.)	P		
4		3	1	0		
Maximum Mark	S.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CIA→?	ESE		
100	Same and the same of the same		60	40		
		1		1		

Learning Objective (LO):

It will enable to analyze the processes in plants, namely – photosynthesis, mineral nutrition, respiration, transportation, and ultimately plant development and growth which are traits displayed by living entities.

Course Outcomes (CO):

CO) No.	Expected Course Outcomes At the end of the course, the students will be able to:	(CLL
1.	Students can describe how plants absorb minerals from the roots. All students can explain why plants need a variety of minerals for healthy growth. Most students can identify two mineral deficiencies in plants.	An
2.	Explain the process of photosynthesis. Compare the leaves of a plant that has all the components needed for photosynthesis to one that has a component missing.	E
3.	Describe how plants obtain the reactants needed for respiration, including the role of the roots and the stomata, explain how the products of respiration are removed from the plant, recognize the relationship between respiration and photosynthesis in a plant	υ
4.	Students will understand basic principles, processes and functions of plant growth and reproduction, including photosynthesis, respiration, transpiration, vegetative growth and reproductive growth, fertilization and fruit formation.	Ap
5.	Students will learn about floral structure and why flowers are important to pollination and reproduction. They will do a flower dissection and drawing, labeling the parts of the flower in order to learn the structure of a plant reproductive system.	

Jan Cojim

we

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO					POs	Sals.	100	136 Ya.	44.00.0	V-13864-X	6.325.43V	83.382929	CHISACAN	PSO	W 3 4 7 2	
	90 18	2	3.3	4	5	6	7	R	0	10	211	110	2	3	~ 4°	5
COL	3	3	3	2	2	2	2	5	-	2	2	2	3	5	2	3
CO2	3	3	3	2	5	5	2	5		2	5	2	2	5	-	3
CO3	3	3	3	2	3	3	2	2		2	-	-	<u>-</u>	5	1- 5	3
CO4	3	3	1 3	2	3	3-	2	-		2	2	3	<u> </u>	2	1 3	3
CO5	3	1/2	1 3	3	2	2	3	9	2	3	3	3	5	2		2
202	פן	3	3	(3	3	13	13	3	2	3	[3	13	13	13	3	3

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

000 1 to 2 to 2 to 2 to 2 to 2 to 2 to 2 to	Detailed Syllabus: BO 604 Plant Physiology		
Units:	Topics	No.01 Legities	©0 No.
I	Plant Cells - Model Organisms, Introduction to Plant Tissue Systems: Dermal, Ground, and Vascular, Structure of Chloroplast Glycosylglycerides, Specialized Vacuoles in Plant Cells, Cell walls: Structure, Biogenesis, and Expansion.	12	1
	Water and Plant Cells- Water transport process, Concept of water potential, Wilting and Plasmolysis, The Cohesion-Tension theory, Water movement from		
	leaf to the atmosphere, Transpiration Mineral nutrition: Essential nutrients, Deficiencies and disorders, Soil, roots and microbes: Mycorrhizal fungi and its significance.		
	Solute Transport- Passive and active transport, membrane transport process, membrane transport protein, ion transport in roots, Apoplastic and symplastic movement of solutes. Goldman Equation, Patch Clamp Studies in Plant Cells		·
п	Photosynthesis- The Light reactions; Photosynthetic pigments, Key experiments in understanding photosynthesis, Action spectrum and absorption spectrum, Photochemical reaction centres, Red drop effect, Enhancement effect, Midpoint Potentials The Carbon Reactions- Organization of the photosynthetic apparatus, Photosystem I and II, Oxygenic and Anoxygenic photosynthesis. Organization of light absorbing antenna systems, mechanism of electron transport, Z-scheme, Photosynthesis: Carbon reactions; The Calvin cycle, regulation of the Calvin cycle, The C2 oxidative photosynthetic carbon cycle, C4 cycle, CAM cycle, synthesis of starch and sucrose. Rubisco: A Model Enzyme for Studying Structure and Function	12	2
	Physiological and Ecological Considerations-Working with Light, Heat Dissipation from Leaves: The Bowen Ratio, The Geographic Distributions of C3 and C4 Plants Translocation in the Phloem-patterns of translocation: source to sink; Materials translocated in the phloem, rates of movement, The mechanism of translocation in the phloem: The pressure flow model, Phloem loading and unloading.		
Ш	Respiration- Glycolysis, citric acid cycle, electron transport Multiple Energy Conservation Bypasses in Oxidative Phosphorylation of Plant Mitochondria, and ATP synthesis.	12	3
	Lipid metabolism- biosynthesis of triacylglycerols and polar glycerolipids. Assimilation of mineral nutrients- Nitrate assimilation, Ammonium assimilation, Biological nitrogen fixation, Development of root nodule, Sulphur		

And Conzin our

ĪV	assimilation, Phosphate assimilation, Oxygen assimilation. Secondary metabolites and Plant defense- Cutin, waxes and suberin, Rethypy Detailed Chemical	12	4
•	Discount asia of Tomorea The Children acid Phillway, Dywins -		
	Structure of a Portion of a Lignin Molecules, Phenonic compounds, Andrews		1
	Alkalaide Cynagonia alycaeides Glycasinalates and their IUICHOID.		
	Plant defence against pathogens, synthesis of antimicrobial compounds against pathogens, hypersensitive response by plants, Systemic acquired resistance,		1 1
	Phytoalexins.		
V	Phytochrome and light control of plant development-The photochemical and	12))
	biochemical properties of phytochrome. Blue light responses. Stomatal		
1	movements and morphogenesis, blue light photoreceptors: cryptochrome, phototropins, carotenoid and zeaxanthin.		
	Plant hormones: Biosynthesis, metabolism, transport, physiological effects of		
	auxins, gibberellins, cytokinins, abscisic acid and ethylene.		1 1
	Stress physiology- Response and adaptation to stress, water deficit and draught Resistance, drought stress, flood stress, salt stress, heat stress, chilling stress and		
	freezing stress.		

BOOKS SUGGESTED:

	SUGGESTED:	
S. No:	Author	Book
1.	Hans Mohr, Peter Schopfer	Plant Physiology; Springer, 629 pages
2.	Taiz and Zeiger	Plant Physiology; 4th Edition. Sinauer
3.	Hopkins WG	Introduction to Plant Physiology. 2 nd or 3 nd Edition
4.	Stern KR	Introductory Plant Biology. 7th Ed. Wm C Brown Publishers
5.	Fosket	Plant Growth and Development: A molecular approach
6.	Buchanan R, Gruissem W	Biochemistry and Molecular Biology

Integrated M.Sc. Semester – VI

		war-oBracker 1.17	Sc. Semester – VI		
Program .		🏂 Subject 🚁	Year	Semester	
Integrated M.Sc.		Botany	3	VI	
Course Code	,	Cour	së Title	Course Type	
H-601		Ethics of S	cience and IPR	Core	
Credit			Hours Per Week(L-T-I	P)*	
	100	$\mathbf{L}_{p} = \mathbb{R}_{p} \times \mathbb{R}_{p}$	T	$\{ \{ \{ j_i \}_{i=1}^n \}_{i=1}^n \} \in \mathcal{F}_i$	
2		2	0	0	
Maximum Mark	S	Station to the state of	CIA	ESE.	λi
100			60	40	20100000 200

Learning Objective (LO):

To introduce basic concepts of ethics and safety that is essential for Life Science Labs. To understand the procedures involved in protection of Intellectual property. To give an insight into different treaties signed. To gain knowledge about patent filing.

Course Outcomes (CO):

(CO,4-0	Expected Course Outcomes	(CIL
No.	Authe end of the course; the students will be able to:	
1.	Identify and analyze an ethical issue in the subject matter under investigation or in a relevant	0
	field. Identify the multiple ethical interests at stake in a real-world situation or practice.	
2.	Analyze several contemporary ethical issues that arise in the practice of medicine from	An
	multiple perspectives, including that of medical professionals, patients and society in general	
3.	Identify criteria's to fit one's own intellectual work in particular form of IPRs	E
4.	A patent provides a limited-term exclusive right to produce and market an invention in	Ap
	exchange for detailed information about that invention	<u> </u>
5.	Distinguish and Explain various forms of IPRs	<u> </u>

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		\$ 150.00		Section 1	POs	5.35		\$4.5 s/s	1 54 X	17545.79	::\$7.4.	1875		PSO	39 39	
	1	2	3	4	5	6	7	8	9	10	144	1000	2	3	4	5
COI	3	3	3	2	2	1	2	1	3	2	2	3	1	2	2	3
CO2:	3	3	3	2	2	1	2	1	3	2	2	3	1	2	2	3
CO3	3	3	3	2	2	1	2	1	3	2	2	3	1	2	2	2
CO4	3	3	3	2	2	I	2	1	3	2	2	3	1	2	2	2
CO590 (A)	3	3	3	1	2	1	2	1	3	2	2	3	1	2	2	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"NoCorrelation

Detailed Syllabus: H 601 Ethics of Science and IPR

	Detailed Synabus: Hoof Etimes of Science and IFR		
Unit No.		No.ofi Lectures	(60) No.
I	Introduction to Ethics- causes of unethical acts, Definition - moral, values, ethics; Role and importance of ethics in science; Professional ethics - professional conduct, Teaching ethical values to scientists, good laboratory practices, good manufacturing practices, Basic Approaches to Ethics; Posthumanism and Anti Posthumanism.	6	1
11	Medical Ethics: Different themes pertaining to medical ethics including ethical issues in public health. Environmental Ethics, Bioethics, Journals and Publishers: Monopolistic practices by Academic Publishers. Plagiarism, softwares for plagiarism detection.	6	2
Ш	Introduction to IPR; Types of Intellectual property – Patents, Trademarks, Copyrights and related rights; Traditional vs. Novelty; Importance of intellectual property rights in the modern global economic environment, Importance of intellectual property rights in India.	6	3
IV	Patents: Definition, patentable and non patentable inventions; types of patent application – Ordinary, Conventional, PCT, Divisional, and Patent of addition; Concept of Prior Art; Precautions while patenting disclosure / nondisclosure;	6	4
V	Case studies and agreements Evolution of GATT and WTO and IPR provisions under TRIPS; Madrid agreement; Hague agreement; WIPO treaties; Budapest treaty; Indian Patent Act (1970)	6	5

BOOKS SUGGESTED:

Entiron cul

	i		The Ethics of Science: An Introduction', Routledge, New York, 1998
l	2	V. K. Ahuja	Intellectual Property Rights in India', 2015
- 1	3	V. K. Ahuja	Law Relating to Intellectual Property Rights', 2017.

Integrated M.Sc. Semester - VI

		integrated Wi.	se. semester – vi	
Program		Subject	Year	, Semester
Integrated M.Sc.		Botany	3	VI
Course Code		Cour	se Title	Course Type:
BOL-601		Botany	Laboratory	Core
Credit	,		Hours Per Week (L-T-	P)
		$= L_{\text{total}} \cdot L_{\text{total}}$	$T_{i,j}$	P. P.
3		-	-	6
* Maximum Mark	S _A +	\$ 14 P	CIA	ESE
100			60	40
L				

Learning Objective (LO):

After completing the course the students will have the knowledge and application of various immunological techniques. Along with the deep understanding of the lower plants students will be able to identify different algae and fungi

Course Outcomes (CO):

	Outcomes (CO):	
No.	Expected Course Outcomes	(C)L
	At the end of the course, the students will be able to:	
1	Gain ability to understand the biology of lower plants. Staining and cross sections of thallus of model plants	
2	Develop expertise on various immunological assays like Differential Leucocyte count, Ag detection & Ab detection, Double diffusion, Radial Immunodiffusion, Total serum protein estimation, Estimation of glammaglobulins in serum, Determination of A:G ratio in serum sample	
3	Deep understanding of Plant Physiology. Estimation of catalase, peroxidase, Indole Acetic Acid oxidase activity. Students will be able to isolate, differentiate and characterize photosynthetic pigments	
4	Acquire hands on experience in media preparation, isolation and growth curve estimation along with mean generation time of microbes. Ability to characterize microbes based or their ability to antibacterial sensitivity, fermentation test, Catalase activity and Amylase activity	4
5	Study of vegetative and reproductive structure of some important fungi and algal species.	AP

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO	**************************************	POs									173,000	PSO				
co	1	2	3	4	5	6	7	8	9	10	11	19197	2	3	4	5
CO12	3	3	3	2	3	1	3	2	-	2	2	3	3	2	2	2
CO2	3	3	3	3	3	2	3	2	3	3	3	3	3	3	3_	3
CO3	3	3	3	2	3	2	3	2	-	2	2	3	3	2	2	2
CO41	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO5	3	3	3	2	3	3	3	3	1-	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BOL601 Botany Labora

S. No.	Experiment:	No.of	(CO) No.
	Distance CV	18	1
I	Biology of Lower plants	10	*
1	a) Pinus- Morphology, transverse section of Needle, transverse section of		
1	stem, longitudinal section of /transverse section of male cone, whole mount of microsporophyll, whole mount of Microspores (temporary slides),		
	longitudinal section of female cone, tangential longitudinal section & radial		
	Longitudinal sections stem (permanent slide).		
	b) Riccia – Morphology of thallus.		l
ļ	c) Selaginella- Morphology, whole mount of leaf with ligule, transverse		
	section of stem, whole mount of strobilus, whole mount of microsporophyll		
	and megasporophyll (temporary slides), longitudinal section of strobilus	į	
	(permanent slide).		
II	Morphological characterization of monocot and dicot plants and	18	2
	identification upto species	ļ	
	Monocot root, Monocot stem, Dicot root, Dicot stem		
III	Plant Physiology	18	3
	Determination of osmotic pressure of cell sap by plasmolytic method.		- 1
	Determination of diffusion pressure deficit in potato tuber.		l
	Determination of the rate of respiration by Ganong's Respirometer.	-	ı
	Determination of the rate of respiration by Pipette manometer		
	Determination of RQ of lipids, protein, carbohydrate by Ganong's		
	Respirometer.	·	1
1	Arabidopsis thaliana - model organism and its development. Estimation of catalase activity, peroxidise, Indole Acetic Acid oxidase	1	j
	activity in plants.		- 1
ļ	Photosynthesis - floating leaf disc experiment under various conditions		j
	(light, dark & light - dark).	1	
	Demonstration of plasmolysis and deplasmolysis in plant cell.	l	
	Demonstration of exosmosis and endosmosis in grapes and resins.		l
	Isolation and spectrophotometric characterization of photosynthetic	ļ	ļ
	pigments.		
	An improved method for the extraction and thin-layer chromatography of		
	chlorophylua and b from spinach.		1
IV	Microbiology	18	
	a) Media Preparation: Preparing and inoculating solid and liquid nutrient	10	4
	media for culturing inicroorganisms: Preparing nutrient media, Pouring		
	7		

Har Coggin Cur

	nutrient agar plates and streaking bacterial culture on solid media, Inoculating nutrient broth with bacterial culture b) Growth Curve: Generating a bacterial growth curve under various pH and environmental conditions (steady and shaking); Calculations of Growth rate constant (μ); Calculation of generation time. c) Antibacterial activity testing d)Bacterial Fermentation test e)Isolation & Detection of coliform bacteria f) Catalase activity		
v	g) Amylase activity Study of vegetative and reproductive structures of Nostoc, Chlamydomonas (electron micrographs), Volvox, Oedogonium, Coleochaete, Chara, Vaucheria, Ectocarpus, Fucus and Polysiphonia, Procholoron through temporary preparations and permanent slides. Thallus organization, spore production and accessory structure of common fungi aspergillus, Penicillium etc To study fungal growth curve.	18	5

		integrated M.	Sc. Semester - VII				
Program		Subject	Year	Semester			
Integrated M.Sc.		Botany	4	VII			
Course Code		Cour	se Title	Course Type			
B-701		Evolutio	nary Biology	Core			
Credit			Hours Per Week (L-T-)				
	7.5%		T	$\left\ \left(\left(\frac{1}{2} \right)^{\frac{1}{2}} \right) + \left(\left(\frac{1}{2} \right)^{\frac{1}{2}} \right) + \left(\frac{1}{2} \right)^{\frac{1}{2}} + \left$			
4		3	1	0			
Maximum Mark	S		CIA	ESE			
100			60	40			

Learning Objective (LO):

To understand and apply basic principles of the origin of life especially prokaryotes as well as eukaryotes in detail. To understand detailed outline of Extinctions and its types. To gain descriptive knowledge regarding Origin and Evolution of Man.

Course	Outcomes (CO):	
CO	Expected Course Outcomes	Œi
No.	At the end of the course, the students will be able to:	
1.	Studying the origin and earliest evolution of life, along with the long-term evolution of the Earth's environments, helps us understand why the Earth became habitable and why terrestrial life has persisted for billions of years	ប
2.	Understanding the role of genetic mechanisms in evolution.	U
3.	In order to discern a particular critical aspect, learners must experience variation in the dimension of that aspect.	E
4.	Understand how the link between environment and evolution. Understand how we can determine whether or not a population is evolving for a specific character. Be familiar with	Ap

	the different agents of evolution.	A =
5.	Students will be able to: identify the characteristics of primates. distinguish between humans	An
	and other primates, discuss three species of human ancestors	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		Mil from			POs		 		81.4.10\ 10.10	tigir yi,	- Marie (1)	1,000,000,000,000,000,000,000,000,000,0	1000	PSU	2 - 22 - 100	T 6
	2/2 1 (2):	2	3	4	5	6	7	8	9	10	11	1	2	3	4	2
CO1	3	3	3	2	3	2	2	2	-	2	2	3	3	2	2	3
CO2 4	3	3	3	2	3	2	2	2	-	2	2	3	3	2	2	2
C031	3	3	3	3	3	3	2	3	1	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	2	3	2	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	3	2	3	3	3	3	3	3	3

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 701 Evolutionary Biology

	Detailed Syllabus: B 701 Evolutionary Biology		$(\bar{c}(\theta))$
Unit: L No.	(Topics)	No of	No.
I	Origin of life: Historical theories and background information, Experimental	10	1
	approaches, Chemogeny, Biogeny, RNA and DNA world, evolution of		
	proteins, origin of photosynthesis, evolution of eukaryotes. Lamarckism,		
	Darwinism, pre-Darwinian and post-Darwinian period, Neo-Darwinism.		
$\frac{1}{\pi}$	Theories of organic evolution. Evidences of evolution. Sources of variations: Heritable variations and their role in evolution. Natural	15	2
11	selection: types of natural selection (Directional, stabilizing and disruptive)	15	2
	and examples (Industrial melanism, Australian rabbits, resistant to		
	pestiscides, heavy metal resistance in plants), Sexual selection, group and kin		1
	selection.		1
III	Polpulation genetics and evolution: Hardy-Weinberg Law (statement and	10	3
	derivation of equation, application of law to human Population); Evolutionary forces upsetting H-W equilibrium. Genetic Drift (mechanism, founder's effect,		
	bottleneck phenomenon); Role of Migration and Mutation in changing allele		
	frequencies	1	
īV	Evolution above species level: Adaptation, adaptive radiation,	15	4
	microevolution, macroevolution, megaevolution, punctuated equilibria and	·	
	related phenomenon. Isolation: Introduction and types of isolation.		·
V	Speciation: species concept, modes of speciation: allopatric, sympatric		
'	Origin and evolution of man, Unique hominin characteristics contrasted with primate characteristics, primate phylogeny from Dryopithecus leading to	10	5
	· • • • • • • • • • • • • • • • • • • •		
	Homo sapiens, Phylogenetic trees, Multiple sequence alignment, construction of phylogenetic trees.		}
L			

BOOKS SUGGESTED:

S. No.	Author	Book
1.	S. Freeman and J.C. Herron	Evolutionary Analysis, 4th Edn., Benjamin-Cummings (2007)
2.	D.F. Futuyma	Evolution, 2 nd Edn., Sinauer Associates Inc.(2009)
	/	======================================

And I

51 W

Integrated M.Sc. Semester - VII Semester Year Subject -Program VII Botany Integrated M.Sc. Course Type Course Title Course Code Core Immunology Hours Per Week (L-T-P) Credit Maximum Marks 🛴 40 100

Learning Objective (LO):

It will provide understanding for the development of new therapies and treatments that can manage or cure the condition by altering the way the immune system is working or, in the case of vaccines, priming the immune system and boosting the immune reaction to specific pathogens.

	Outcomes (CO):	The second second second second second second second second second second second second second second second se
CO	Expected Course Onicomes	(C)L
No.	Atthe end of the course, the students will the able to	
1.	Describe the purpose of the immune system. Identify the components of the immune system. Differentiate between the innate and adaptive immune response.	U
2.	To understand how the immune system develops, how the body defends itself against disease, and what happens when it all goes wrong.	E
3.	Explain the genetic events that lead to diversity of T-cell receptors. Compare and contrast the various classes and subtypes of T cells in terms of activation and function.	An
4.	Distinguish between an antigen and an antibody, describe the chemical structure of an antibody (immunoglobulin) protein, describe different mechanisms of how antibodies limit the effects of pathogens or toxins by opsonization, neutralization, agglutination, precipitation, lysis, and antitoxin action.	Ap
5.	Demonstrate the basic knowledge of immunological processes at a cellular and molecular level. Define central immunological principles and concepts.	C

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

PO/	5 - 1,000 100 per mar	PSO														
CO	3.5% 1 8%.	2	. 3	4	5	6	7 7	8	~ 9	10	11	201	2	3	+ 4	5
COI	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3
CO24	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	3
CO3	3	3	3	3	3	2	3	3	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO5'	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 702 Immunology

Unit. No:	Toples	No.off Lectures	(c(0) N(),
I	Overview of the Immune system: Types of immunity, innate, acquired, passive and active, self vs nonself discrimination, Adaptive immune response, Autoimmunity	12	1
II	Cells and organs of the immune system: T cell receptors, T cell receptor genes & gene rearrangements, T cell maturation, activation & differentiation, B cell generation, activation & development	12	
III	Antigens and Antibodies: Immunoglobulins structure and function, Immunoglobulin genes Organization and rearrangement, Antibody diversity, Antigen antibody reactions, MHC (antigens and genes), Antigen processing & presentation	·12	3
IV	Immune response: Self Non self discrimination (mechanism), Clonal selection theory & idiotypic network hypothesis, Cytokines, The complement system, Cell mediated effector response, Leukocyte migration and inflammation, Hypersensitive reactions, Immune regulation, Immune response to infectious organisms, Vaccines, Immunodeficiency diseases (AIDS)	12	4
V	Immunology & applications: Transplantation immunology, Tumour immunology, Immunotechnology, Animal models. Plant immunity	12	5

BOOKS SUGGESTED:

	Author ''	Spook Spook
1.	Goldsby, Kindt, and Osborne	Immunology
2.	Janice Kuby	Immunology
3.	Ivan Roitt	Essential Immunology, 8th Edition
4.	Cellular and Molecular Immunology	Kathyrn Austyn
5.	David	Biology of Immunological Diseases
6.	Richard Burry	Immunocytochemistry: A practical guide

		Sc. Semester – VII	
	Subject	Year	Semester
	Botany	4	VII
	Cour	se Title	Course Type
			Core
		Hours Per Week (L-T-	P)
	L	or the state of th	To the Property of the Propert
	3	1	0
•		CIA	ESE
		60	40
		Botany Cour Imaging Techn Ro	Botany 4 Course Title Imaging Technology in Biological Research Hours Per Week (L-T- L T T 1 3 I

Learning Objective (LO):
This paper gives an insight of different imaging techniques used in biological research.

Course Outcomes (CO):

000		(cjr
No.	Expected Course Outcomes At the students will be able to: Define and explain the propagation of light in conducting and non-conducting media; define and explain the physics governing laser behaviour and light matter interaction; apply wave	Ap
2.	Understand why and how the light microscope and electron microscope are used in biology Can analyze and understand NMR pulse sequences using basic NMR theory. master relevant academic tools and techniques in data recording and interpretation of NMR	An E
4.	Spectra. Imaging is a range of tests used to create images of parts of the body. Demonstrate the ability to use discipline specific research techniques.	Ap C

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

POCO	TATEDD	1apping for the course: POs PSO														
2 0,00	1	2	-3	4	5	6	7	8	9.1	10	11	[6]1 E	2	3	4	5
CO1	3	3	3	2	3	3	3	2	1	3	2	3	3	2	2	2
CO2.	3	3	3	2	3	3	3	2	2	3	2	3	3	2	2	2
CO3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
CO4:	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
COS:	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 703 Imaging Technology in Biological Research

Unit No.	Toptes	No of	(60) No.
I	The power of ten (understanding how small cells and the sub-cellular contents are). An introduction to light and optics, exploring with lenses (what are lenses, looking through them, understanding the concept of magnification, mirrors, angles of reflection, refraction, prisms and colors)	10	1
u	Fundamentals of illumination (ray diagrams, types of light sources, LEDs, power levels, coherence of light, elliptical reflectors) Exploring microscopes (short history, magnifying glass, simple and compound microscopes, electron Microscopes, stereomicroscope)	10	2
III	Fluorescence microscopy (Understanding fluorescence, Fluorescence protein technology, GFP, YFP), two-photon fluorescence microscopy, matrix assisted laser desorption/ionization mass spectrometry (MALDIMS) imaging	15	3
IV	Live cell imaging (confocal microscopes), Differential interference contrast (DIC) images. Comparing Confocal and Widefield Fluorescence Microscopy, Atomic force microscopy and optical tweezers force spectroscopy		4
V	NMR Imaging Spatially nonresolved NMR spectroscopy; low-field NMR instruments; 1H-nuclear magnetic resonance (NMR) microimaging; 1H-magic angle spinning NMR spectroscopy; MAS-13C NMR spectroscopy, Spectral-resolution enhancement using magic angle spinning.	1	5

		SUGGESTED:		
1	S. No.	Author	Book	
	1.	Ulf Grenander, Y Chow and	Hands: A Pattern Theoretic Study of Biological	
		Daniel M Keenan	Shapes (Research Notes in Neural Computing)	

2.	Volent V Trockin I il	(Volume 2) Alberts et al.							
۷.	Valery V Tuchin, Lihong Wang	Optical Polarization in Biomedical Applications							
	and Dmitry A Zimnyakov	(Biological and Medical Physics, Biomedical							
3	DM Combands	Engineering)							
٥,	RM Lambrecht	Biological Models in Radiopharmaceutical							
4.	Dhiling G	Development (Developments in Nuclear Medicine)							
4.	Philippe Sansonetti	Bacterial Virulence: Basic Principles, Models and Global							
5.	Piaha-Jay 11 11	Approaches (Infection Biology (VCH)							
۱ ک	Richard Nuccitelli, Leslie Wilson	A Practical Guide to the Study of Calcium in Living							
	and Paul T Matsudaira	Cells, Volume 40 (Methods in Cell Biology)							

2000 C C R R C R R C R C R C R C R C R C	· _ · · · · · · · · · · · · · · · · · ·	Integrated M.	Sc. Semester – VII		
Program		Subject	Year	Semester	
Integrated M.Sc.		Botany	4	VII	
Course Code		Cour	se Title	Course Type	
BO 701		Developmenta	l Biology of Plants	Core	
Credit			Hours Per Week(L-T-I	P) :: []	
		L	T	\mathbf{p}	
4		3	l	0	
Maximum Marks		ma. A Karasa	CIA	ESE	
100			60	40	

Learning Objective (LO):
Upon completion of the course the students will have a fundamental understanding of the physiological principles and processes involved in plant growth and development.

Course Outcomes (CO):

CO.	Expected Course Ontcomes	- CIF
No.	At the end of the course, the students will be able to	
1.	To understand the various development processes along with stages during plant germination and growth. To explain the differences between plant and animal development mechanisms and organization of shoot and root apical meristem (SAM & RAM).	An
2.	To understand the processes of seed germination and dormancy and major factors affecting them. To also explain how overcoming seed dormancy occurs?	U
3.	Learning a cellular prospective of leaf development and phyllotaxy. To also learn molecular mechanism and regulations of floral development and sex determination.	Ū
4.	Detail study of gametogenesis in plants (a process of male and female gamete formation), pollination and fertilization.	Ap
5.	To develop understanding of plant embryogenesis, endosperm development, apomixis, polyembryony and types of seeds based on presence and absence of endosperm.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

			J 00 2 12 2 1 1 1 8 2 1	A-84 - 82	POs	Palabali	180.94	450,628			.C. 1973	17 1 3 4 1 18 1 4 1 1 1 1	12	PSO	4	5
POCO	1	2	3	4	5	6	7	8	9	10	11	3	2	2	2	2
COL	3	3	3	2	2	2	2	2	12	2	2	3	2	2	2	2
CO2	3	3	3	2	2	2	2	2_	1-	2	2	3	2	2	2	3
CO3	3	3	3	2	3	2	2	2_	1-	1 3	2	3	3	3	3	3
C04	3	3	3	3	3	1	3	3	1 2	1 3	5	3	3	3	3	3
CO5*	3	3	3	3	3	2	3	β	2		<u>Ľ</u>	<u> </u>	Г		<u> </u>	

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: RO 701 Developmental Biology of Plants

Unit	Detailed Syllabus: BO 701 Developmental Biology 012 Propies	<u> </u>	(CO) No.
1	Development processes in plants: How are the mechanisms different from that of animal development? Organization of SAM, RAM, Root and shoot development mechanisms.	10	1
11	Process of germination, Hormonal regulation of seedling growth, seed dormancy types, and its hormonal regulation, overcoming of seed dormancy.	15	2
III	Leaf development, phyllotaxy, control of leaf forms, Floral organs, Flower development, molecular regulation of flowering process, Floral evocation, Sex determination (Ex Coccinia)	15	3
īV	Gametogenesis- microsporogenesis and microgametogenesis, megasporogenesis and megagametogenesis, pollination and fertilization processes in angiosperms	10	4
V	Plant embryogenesis, Development of embryonic polarity, Endosperm development, apomixis, polyembryony, endospermic and non-endospermic seeds	10	5

BOOKS SUGGESTED:

JOIN	SOGGESTED.	
SNo	Author	Book Book
1.	Alberts et al.	Molecular Biology of the Cell
2.	SF Gilbert	Developmental Biology
3.	Bhojwani, S.S. and Bhatnagar, S.P. (2011)	The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition
4.	Shivanna, K.R. (2003).	Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
5.	Raghavan, V. (2000).	Developmental Biology of Flowering plants, Springer, Netherlands.
6.	Johri, B.M. 1 (1984).	Embryology of Angiosperms, Springer

Integrated M.Sc. Semester - VII

		Integrated M.	oc. Semester - VII		
Program		Subject -	Year		Semester =
Integrated M.Sc.		Botany	4		VII
Course Code		Cour	se Title		Course Type
BOL-701		Advanced B	otany Laboratory		Core
. Credit			Hours Per Week (L-T	'-P)	
	* 7	(# .L *:,///].E	T	*	$\mathbf{P}_{\mathbf{p}}$

HA W

Coffee Com

and

5			
	-	-	10
Maximum Marks		1	
The state of the s		CIA	ESE
100			
100		60	40
		••	

Learning Objective (LO):

Key goal of experiments is to understand and perform various experiments to study developmental stages of plants and factors affecting their growth. Students will also get practice of various in vitro conservation methods.

Course Outcomes (CO):

(60) (03)	Expected Course Outcomes At the end of the course, the students will be able to:	(CL) 1000-100
1	Onderstanding of monocot dicot plants their identification Develop Anatomical understanding of angiospermic plants	AP
2	Understanding the factors affecting growth in plants. Preparation of MS media and Callus formation from explants.	AP
3	Study of effects of phytohormones on plant growth development and germination patterns under stress and normal conditions.	AP
4	Synthetic seed preparation experiments	AP
5	Understanding of conservation of plants by in vitro methods	AP

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO		apping for the course: POs														
	1	2	3.	4:	5	6	7	8	. 9	10	11	1	2	3	· 4	5
CO1	3	3	3	2	3	2	2	2	2	2	2	3	2	2	2	3
CO2**	3	3	3	2	3	2	2	2	2	2	2	3	2	2	2	3
CO3	3	3	3	2	3	2	2	2	2	2	2	3	2	2	2	3
CO4 +	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	2
CO5-	3	3	3	3	3	3	3	3	2	3	2	3	3	3	3	2

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BOL701 Advanced Botany Laboratory

Contract of the Contract of	Detailed Synabus. BOLIOI Advanced Botany Laboratory		
S.	Experiments	No. of	<u>(CO)</u>
#410.33		海Tap	NO:
I	Immunology	30	1
	d) Differential Leucocyte count		-
1	a) Ag detection & Ab detection		1
	b) Double diffusion		1
	c) Radial Immunodiffusion		
	d) Total serum protein estimation		1
	e) Estimation of glammaglobulins in serum		
	f) Determination of A:G ratio in serum sample		
II	Developmental Biology	35	2
1	Isolation of protoplast from various plant tissues and testing their viability.		
	Demonstration of protoplast fusion employing PEG.		
	To study environmental impact in developmental activity using checklist as		
	}		

		1	1
- 1	EIA method Study of microscopic gametogenesis in section of anthers. Pollen germination using hanging drop method, sitting drop culture, suspension culture and surface culture,		
	suspension culture and surface culture,	35	3
III	Seed set and fruit development		1
	Study of endospermic and non endospermic seeds.		
	Variation of mygotic globular heart shaped tornedo stage in empryo		1
	Field survey of several type of flower with different pollination incentions.		1
	Study of germination patterns under stress and normal conditions		
īV	Study of effects of phytohormones on plant growth development	25	4
	a) effect of auxins		ł
	b) effect of cytokinins	25	5
V	Organogenesis and somatic embryogenesis using appropriate explants and		!
1	preparation of artificial seeds.		

		Integrated M.S	Sc. Semester – VIII		
Program		"Subject 🦸	Year		Semester
Integrated M.Sc.		Botany	4		VIII
Course Code		Cour	se Title		Course Type
B-801		Vi	irology	,	Core
Credit			Hours Per Week (L-T-	P)	C.
	1.044	L. Carlo	T T		P
4		3	1		-
- Maximum Mark	S		CIA		ESE*
100			60		40

Learning Objective (LO):

It will provide understanding of different types of viruses, their structure, mode of replication. It will also provide understanding of various therapies in case of viral infections.

Course Outcomes (CO):

CO	Expected Course Outcomes	CL
No.	Airthe end of the course the sinder is will be able to:	
A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
i	Students will be able to comprehend the various concepts regarding	U
	Origin, architecture and nomenclature of the viruses.	
	Replication mechanism and mode of transmission of viruses	
2 D	Development of vaccines for the viral epidemics and also about antiviral chemotherapy.	L
3	Virus genetic structure and their mode of replication	U
4	Evolution of viruses and some serious infectious viruses such as HIV, Herpes and Pox virus	U
5	Study of bacteriophages, mode of replication and other infectious viruses	Ū

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	1	CPS	*SOSSESSES	di es accepto	POs	1 4 2 10	Service in the	C. Competition	A 4000 1000							
	1	2	3	4	1 5	6	7.	Loo	I	1	1			PSO		T 6
COI	3	3	3	2	13	2	2	<u> </u>	9	10	11	1 1	2	1838	4	1 2
CO2	3	3	3	3	2	2	2	<u>k</u>	12	2	2	3	2	2	2	<u> </u>
CO3	3	3	2	2	2	3	3	3	2	3	3	3	<u>B</u>	3	3	2
CO4	2	2	3	3	3	3	3	<u> </u>	2	3	3	3	3	3	3	2
COS	3	 	3	3	3	3	3	3	2	3	3	3	3	3	3	2
1211 6	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

	Detailed Syllabus: B -801: Virology		
No.	Royics	Ro, of	CO No
1	Introduction to Virology: definition, properties and origin of viruses, Virus architecture and nomenclature, Virus replication cycle, Basic virological methods, Basics of virus entry, spread and transmission	12	1
II	Host resistance to viral infection: immune responses, Vaccines and antiviral chemotherapy: the prevention and treatment of viral diseases, Epidemiology, Exploiting viruses as gene therapy and vaccine vectors	15	2
III	Viruses and cancer: oncoviruses and oncolytic viruses, Polioviruses and other single-stranded positive-strand RNA viruses, Rabies and other single-stranded non segmented negative-strand, Influenza virus and single-stranded segmented negative-strand RNA viruses.	12	3
IV	Evolution of viruses: new and reemerging viruses, Herpesviruses (nuclear large double-stranded DNA viruses), Poxviruses (cytoplasmic large double-stranded DNA viruses), HIV and other retroviruses	10	4
V	Hepatitis B virus (reverse-transcribing DNA virus) and other viruses causing hepatitis, Prion diseases, Plant viruses and common viral diseases in plants, Bacteriophages	11	5

Books Recommended:

S.No.	Author	Book
1	L Collier, J Oxford and Paul Kellam	Human Virology (4th edition),
2	SJ Flint, LW Enquist, VR Racaniello and AM Skalka	Principles of Virology (3rd edition) 2009
3	AJ Cann	Principles of Molecular Virology,
4	Teri Shors, Jones and Bartlett	Understanding Viruses
5	NJ Dimmock, A Easton, K Leppard	IntroductiontoModernVirology6thedition,

Integrated M.Sc. Semester - VIII

Properti	Spire	Vazii	े चित्राच्या <i>न</i>
Integrated M.Sc.	Botany	4	VIII
Course Code	Cou	rse Title	Course Type
B-802	Biotec	hnology-1	Core
Credit		Hours Per Week (L-T-P	
	$\mathbf{L}_{\mathcal{I}}$	T.	P
4	3	1	0

		أحسسا
		· ::
25 th		
		. n 17 - 946
S. De la gray a seconda.		- 1
Wasanin Vinta	40	- 1
	A CONTRACTOR OF THE CONTRACTOR	
Same State of the control of the con	60	
100		
100		

It will give an overview of the basic biotechnology techniques, rDNA technology, PCR, Blotting and plant tissue culture techniques. culture technique.

CL Course Outcomes (CO):-No. Expected Course Outcomes

At the end of the course, the stud At the end of the course, the students will be able to: Students will have in -depth understanding of Basic principles of genetic engineering. Transgenic animals, cloning and applications Development of transgenic plants and their applications. Different molecular techniques such as library construction, vector designing etc. L Learning hybridization techniques, sequencing and gene transfer methods Study of trangenics plants and animals and gene therapy L Tissue culture techniques, cloning, micropropagation techniques

CL: Cognitive Levels(R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	Propie	Sapping for the course: POS PSO										2030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 - 1030 -				
10,00	1	2	3	4	5	6	7	8	9.	10 .	11	€1 €	2	3	4	<i>∞</i> 5
CO1	3	3	3	3	3	3	3	2	2	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
CO3*	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B-802: Biotechnology-I

Unit	Topics	No of lectures	CO.
Unit-I	Basic concept of genetic engineering, Methods for creating recombinant DNA molecule, properties of restriction endonucleases and their mode of action, Cloning Vectors-Lambda phage, Plasmid, M13 phage, cosmid, yeast, viral and Expression vectors, YACs, BACs, PACs. Introduction of DNA into living cells and selection of recombinants.	10	1
Unit II	Construction of DNA library:Genomic libraries: Partial digest, choice of vectors, construction and evaluation of a genomic library, growing and storing libraries, cDNA Library: methods of generating cDNA library, Genomic vs cDNA library, Expression libraries	10	2
Unit-III	Selection/screening: Analysis of genomic DNA by Southern hybridization, Northern and Western blotting techniques, Restriction mapping, DNA sequencing and analyses techniques, next gen sequencing, microarray technology. DNA manipulation techniques: Preparation of radiolabelled and synthetic probes, Amplification of DNA by polymerase chain reaction, Site		3

	directed mutagenesis, Gene transfer methods for animals and plants Transgenic animals/plants- Selectable markers, Reporter genes for promoter analysis, Embryonic stem cells, Super mouse, Pronuclear Transgenic Goats, Whole animal cloning e.g. Dolly, gene Knock-out, knock-down, knock-in technology, Gene therapy e.g. SCID], Agrobacterium mediated transformation in plants, Ti plasmid.		4
OIIII-V	Cell and tissue culture in plants and animals: Primary culture; Cell line; Cell clones; Callus cultures; Somaclonal variation; Micropropagation; Somatic emb genesis; Haploidy; Protoplast fusion and somatic hydridization; Cybrides; Arti I seeds; Hybridoma technology.	15 ryo ficia	5

Books Recommended

S.No.	Author	Book
1	Benjamin Lewin	Gene VII, Oxford Publishers
2	T A Brown	Genome, Second edition,
3	Old and Primrose	Principles of Gene Manipulation;
4	Simmons and Gardner	Principles of genetics;
5	Donald Voet and Judith Voet	Biochemistry 3rd Edition,
6	T D. Watson and others	Molecular Biology of the Gene, 6th Edition
7	GM Cooper	The Cell: A molecular approach: Library of
		Congress cataloging in publication data.
8	Griffiths A and Miller J	Anintroductiontogeneticanalysis;Freeman
9	Lodish H and Berk	A Molecular cell biology;
10	Sambrook J, Russell	Molecular cloning: Vol I, II, III; CSHL Press
11	TA Brown	Gene cloning and DNA analysis;
12	BGlick, JPasternak & CPatten	Molecular Biotechnology principles and
		applications of Recombinant DNA, 4th
13	K. Deb and Satish Totey	Stem Cells Basics and Applications;
14	Gary Stein and Maria B et al.	Human Stem Cell Technology and Biology;

	integrate	a M.Sc. Semester – VIII	
ilengiam	Sugren	V ≠0	<u> इंट्राम्लिक</u>
Integrated M.Sc.	Botany	4	VIII
Course Code	Course	Title 200 and a	Course Type
B-803	Bioinfor	matics	Core
Credit		Hours Per Week (L-T-P)	
	L (2) 2-4-2-4	Carried Const.	*P
4	3	1	0
Mersiania, Ven	i (co	OK.	j : (5]
100		60	40

Learning Objective (LO):
It will give an overview of fundamentals of bioinformatics, databases and different tools BLAST FASTA.

Application of these tools for understanding the biological molecules.

VETERS!	se Outcomes (CO):- Beggerette anne (ongennes Arabe end of the course, discondonts will be able to	GL.
1	Students will have in —depth understanding of History, definition, importance and applications of Bioinformatics, Bioinformatics and computational Biology opportunities in India. Major Bioinformatics Resources	L
2	Introduction of Biological Database Basics and techniques of alignment, Phylogenetic Analysis, Algorithms /methods of	L
4	Protein structure analysis and prediction, Fundamentals of the methods for 3D structure prediction, sequence similarity/identity of target proteins of known structure, fundamental	Ap
5	principles of protein folding	Ap

CL:CognitiveLevels(R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	31.4573	Mapping for the course: POs PSO														
1020	1 1	2 1	3	4	5	6	7	8	.9	10	11 14	1.0	2	. 3	4	5
COI	3	3	3	3	3	3	3	3	1	3	3	3	3	3	3	2
CO2 - =	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2
CO3 - 1	3	3	3	3	3	3	3	3	1	3	3	3	3	3	3	1
CO4	3	3	3	3	3	3	3	3	1	3	3	3	3	3	3	2
CO5 = 4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	1

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 803 Bioinformatics

	Detailed Syllabus: B 803 Bioinformatics		20.2
Unit No		No of lectures 1.1	CO
<u>Unit-I</u>	Introduction to Bioinformatics: Bioinformatics - History, definition, importance and applications of Bioinformatics, Bioinformatics and computational Biology opportunities in India. Major Bioinformatics Resources: NCBI, EBI, ExPaSy	10	1
<u>Unit II</u>	Biological databases- Introduction of Biological Databases; (a) Nucleic acid databases (NCBI, DDBJ, and EMBL). (b) Protein databases (Primary, Composite, and Secondary)(c) Specialized Genome databases: (SGD, TIGR, and ACeDB) (d) Structure databases (CATH, SCOP, & PDBsum)		
<u>Unit-III</u>	Alignment: Basics and techniques, Local alignment and Global alignment, Pairwise sequence alignment:NEEDLEMAN and Wunsch algorithm, Smith and Waterman algorithm, The Dot Plot.Multiple Sequence Alignment (MSA): Definition, Objective, Methods for MSA: Heuristic approach, Dynamic programming approach and their combinations. database similarity searches-BLAST/FASTA algorithms, Phylogenetic Analysis: Phylogenetic-trees, Terminology of tree-reconstruction, rooted and un rooted trees, gene vs species trees and their		3

	properties. Algorithms /methods of phylogenetic analysis: UPGMA, Neighbor-Joining Method.	
<u>Unit-IV</u>	Protein structure analysis and prediction: Identification/assignment of secondary structural elements from the knowledge of 3 D structure of macromolecule using DSSP and STRIDE methods, Prediction of secondary structure: PHD and PSI PRED method Tertiary (3 D) Structure prediction: Fundamentals of the methods for 3D structure prediction (sequence similarity/identity of target proteins of known structure, fundamental principles of protein folding etc.)	4
<u>Unit-V</u>	Genomics and Functional Analysis Methodologies for high throughput analysis including NGS, application of bioinformatics in genomics. Comparative genomics. Drug discovery and Development: Introduction to Drug Design and Development, Drug targets, Lead Identification and Modification, Computer-Aided Drug Design, Drug Delivery, Applications of Bioinformatics: Pharmaceutical industries, immunology, agriculture, forestry; Legal, ethical and commercial ramifications of bioinformatics.	5

Books Recommended:

S.No.	Author	Book
1	E Wayne W Daniel	Biostatistics: Afoundation for Analysis in the Health Sciences
2	Prem S Mann	Introductory Statistics. 5th Edition;
3	Olive Jean Dunn	Basic Statistics: A primer for Biomedical Sciences
4	C Stan Tsai	Computational Biochemistry;
5	SC Rastogi et al.,	Bioinformatics Methods and Applications
6	A Caldwell et al.,	Integrated Genomics; Wiley Publishers

Integrated M.Sc. Semester - VIII

All Victoria services and an all and a services and a service and a serv		d Misc. Semester - VIII	
Pagani.	. કેમુકિક કરો	Yen	
Integrated M.Sc.	Botany	4	VIII
Course Code	Cours	e Title	Course Type
B-804	Biotechi	rology II	Core
Credit		Hours Per Week (L-T-P)	
	$\mathbf{L}_{i,\mathbf{k}}$	Taring Taring	P .
4	3	1	0
VEX.mim (VE)	ile;	GIA .	ESE
100		60	40

Learning Objective (LO):

It will give an overview of industrial, medical, environmental biotechnological processes. It will also provide concept regarding ethical concerns of GM crops.

Course Outcomes (CO):-

(CO) Expected Course Outcomes
No. At the end of the course, the sindents will be able to

1	Principles of plant breeding, Important conventional methods, Ethics of GM crops and animal cloning, Plant diseases and defensive mechanisms,	U
2	Bioprocess Technology, basics of bioreactor kinetics and mathematical equations,	U
	Kinetics of microbial growth Solid state fermentation.	L
3	Industrial Biotechnology, Biopolymers	
4	Remediation and Biotechnology their health effects, Solid waste management,	υ
	Environmental and industrial pollution control	
5	Medical Biotechnology, Tissue Engineering and applications, Biomaterials and applications, Introduction to nanotechnology and nano-biotechnology,	Ap
	Nanomaterials and their uses.	

CL: Cognitive Levels(R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	POs															
	1	2	3	4	5 %	6	.7	8	9.	10	11	11	2	3	4	5
CO1	3	3	3	3	3	3	3	2	2	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
GO5	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: B 804: Biotechnology-II

Unit No	Topics	No of lectures	©
<u>Unit-I</u>	and cross pollinated and vegetatively propagated crops; Non conventional methods; Polyploidy: Genetic variability; Plant diseases and defensive mechanisms. Ethics of GM crops and animal cloning. Model organisms - S. cereviceae, Dictostylium, Caenorhabditis elegans, Arabidopsis, Zebra Fish, Mouse, Drosophila	10	1
Unit II	Industrial Biotechnology-I Bioprocess Technology [basics of bioreactor kinetics and mathematical equations regarding bioreactors, scale-up and aeration of bioreactors in detail, Kinetics of microbial growth, substrate utilization and product formation: Batch, Fed- Batch and continuous processes, Scale up concepts with respect to fermenter design and product formation, Gas exchange and mass transfer: O2 transfer, critical oxygen concentration, determining the oxygen uptake rate, Solid state fermentation.	15	
Unit-111	Industrial Biotechnology-II Downstream Processing - Flocculation and floatation, Filtration, Centrifugation, Cell disruption, Liquid extraction, Precipitation, Adsorption, Dialysis, Reverse osmosis, Chromatography, Crystallization and drying, Common examples: Biopolymers		3
Unit-IV	Remediation and Biotechnology- Biodegradation of xenobiotic compound.	. 10	4

And Car

un

Unit-V	Priority pollutants and their health effects, Microbial basis of biodegradation, Bioremediation- phytoremediation and metal, Environmental and industrial pollution control, Biopesticides, Microbial plastics, Solid waste management		
<u>Ginte</u>	Medical Biotechnology-a.Production of small biological molecules, Tissue Engineering -Growth Factors and morphogens: signals for tissue engineering and whole organ development, extracellular Matrix: structure, function and applications to tissue engineering, Cell adhesion and migration, Inflammatory and Immune responses to tissue engineered devices b. Biomaterials -Polymeric scaffolds, Bio mimetic materials, Nanocomposite scaffolds Introduction to nanotechnology and nano-biotechnology, Nanomaterials and their uses.	·	5

DOOK	s Recommended:	
l	R.IanFreshney, GlynN.Stacey, Jonathan M. Auerbach	CultureofHumanStemCells.JohnWiley&Sons
2	BernardRGlick, Jack JPasternak, Cheryl L Patten	Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press
3	Robert Lanza, Robert Langer, Joseph P Vacanti	Principles of Tissue Engineering
4	F Gilbert	Developmental Biology; 6th Edition;
5	Gordana Vunjak Novakovic, R Ian Freshney	Culture of Cells for Tissue Engineering;
6	SB Primrose and Twyman	Principles of gene manipulation
7	RW Old and SB Primrose	Principles of gene manipulation
8	Watson	Recombinant DNA
9	TA Brown	Gene cloning and DNA analysis
10	D Clark, N Pazderník	Bioprocess Technology Biotechnology Applying the genetics to revolution

Integrated M Sc Semester - VIII

Subject	Year	Semester
Botany	4	VIII
Cour	se Title	Course Type
Advanced B	otany Laboratory	Core
	Hours Per Week (L-T-)	P)
L	$\mathbb{R}_{\mathcal{F}} = \mathbb{R}_{\mathcal{F}} \subset \mathbf{T}_{\mathcal{F}}$	Policy of the Policy
*	-	10
	CIA	ESE
	60	40
TO THE PARTY OF TH	Subject Botany Cour Advanced B	Botany 4 Course Title Advanced Botany Laboratory Hours Per Week (L-T-

Learning Objective (LO):
Key goal of experiments is to understand and perform various techniques to for the synthesis and application of nanoparticles. Extraction and estimation of phytochemicals and applications of different bioinformatics tools.

Course	Outcomes (CO):	GL
(CO)	Bapeded Course Oulcomes	
No.	Section 1997 Annual Control of the C	
	Authorndofithe course, the students will be able to:	AP
1	Techniques for the synthesis of nanoparticles from plant sources and optimization.	AP
2	Experiments are designed to learn the techniques to extract phytochemicals by different	
\ <u> </u>	methods.	AP
3	Observation of plant growth and study of different chemical stress on plant growth.	AP
4	Different biochemical tests for the detection of plant compounds.	AP
5	Applications of different bioinformatics tools to retrieve the data from different	A
1	biological databases.	

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	244360	PSO														
	1	2	3		5	T			9	10	*11<	%1 %	2	∞3	4	S-5
CO1	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2
CO2 **	3	3	3	2	3	2	3	2	2	2	2	3	2	2	2	2
CO3	3	3	3	2	3	2	3	2	2	2	2	3	2	2	2	2
CO4	3	3	3	2	3	2	3	2	2	2	2	3	2	2	2	2
CO5	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2

[&]quot;3"-Strong,"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BOL801 Advanced Botany Laboratory

S. No:	Desperiment)	Nosof Lab	(0) (0)
ı	Symptoms of virus diseases in plants	25	1
	Total DNA extraction from virus infected plants		
	Detection and diagnosis of plant viruses with serological (ELISA) technique		
	RNA extraction, cDNA preparation, PCR and RT PCR		
II	Preparation of MS media	35	2
	Callus formation from carrot cells		[]
	Pollen storage, pollen pistil interaction, self incompatibility in vitro	1	
	pollination, Emasculation, bagging and hand pollination to study of pollen		
	germination		
	In vitro conservation studies		
	a)Effect of temperature		
	b)Effect of osmotic agents		
III	Effect of salt and metal stress on plant growth	35	3
	Study of bioremediation of heavy metal		
	Isolation and identification of microorganisms from industrial waste water		
	Determination of thermal death point (TDP) and thermal death time (TDT)		

What Colin

und

	of microorganisms.	.,	
	Study the production of citric acid and its qualitative and quantitative estimation		
	Bioethanol production		
IV	Plant biochemical tests- total protein, proline etc. Essential oil extraction from aromatic plants Preparation of plant extracts using soxhlet method and phytochemical tests Silver Nanoparticle synthesis from plant extract. Silver Nanoparticle synthesis from tea extract RNA extraction cDNA preparation PCR and RT PCR	30	4
V	Bioinformatics: DNA sequence analysis using BLAST; sequence pattern, motifs and profiles. Prediction of secondary structure of proteins Prediction of tertiary structure of (fold recognition, homology search) Molecular modeling and dynamics: using small oligonucleotides and small protein with known crystal structure (available from data bank), Drug designing—using available data Applications of bio informatics, Primer designing.	25	5

Integrated M.Sc. Semester - IX

		Integrated M.S	c. Semester	<u> </u>	
Program		Subject	Taranta an Y	ear	Semester -
Integrated M.Sc.		Botany		5	IX
Course Code		Cour	se Title		Course/Type
BoPGD901		Botany PG Di	ssertation/ I	Project	Core
Credit			Hours Per V	Veek (L-T-P)	
	1.0	" Large of	7 7.77.77.53	$T_i \subseteq \mathcal{C}_{i,j} \setminus \mathcal{C}_{i,j}$	P SP
20				-	-
Maximum Mark	S .	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CIA V. / S		ESE
400			*		400

Scheme for evaluation of Project/Dissertation work for 9th semester CBS

The Center for Basic Sciences (CBS) offers 5 Year Integrated M.Sc. program (total credits-240) in subject Botany. The complete program is for duration of 10 semesters. Each semester from 1-VIII carries 25 credits and semester IX to X will carry 20 credits each. As per the course structure of Int M.Sc. 9th semester, students have to carry out a project/Dissertation in their respective subjects for successful completion of the program. The project has to be carried out in recognized National/State laboratories/Institute/Universities.

The proposed evaluation scheme for Integrated M.Sc. 9th semester projects/Dissertation in subject Botany (BPGD 901) is as follows:

	272 (22)	JULY 15 dis TORIOTTO						
	l						Marks	
2	2	Project/Dissertation	(certified	by the	supervisor	of the	150	
L		Institute)					Ė	

		150	
1	3	Seminar based on Project/ Dissertation and Seminar 100	
		Viva-Voce based on Project report/ Dissertation and Seminar 100 400	
		m + 136 de	h

The valuation of all the projects/Dissertation will be done by the external examiner, internal examiner of the respective subjects and Director (CBS) or nominee of the Director.

		Integrated M.S	Sc. Semester - X	Semester. Semester				
The state of the s		Subject	Year	Donnesses.				
Program Integrated M.Sc.		Botany	5	X				
Course Code		Cour	se Title	Course Type				
BE1001		Proteomic	s and Genomics	Elective				
Credit			Hours Per Week (L-T-	P)				
		E. E.	T Section	P . 1-3. 32				
5		4	1	0				
Maximum Mark	IS.		CIA	ESE .				
100		The control of the co	60	40				

Learning Objective (LO):

It will give understanding on identifying the structures of proteins and biological functions of specific individual proteins, their cellular activities separation techniques, whole protein interaction networks. Genomics will give understanding of altering a genome with unparalleled efficiency and precision. Genomics is fostering an appreciation for what our DNA means for our health, identities and culture.

Course Outcomes (CO):

00 No.	Especied Course Outcomes Additional of the course, the students will be able to:	(CIL,
1.	Introduction and scope of proteomics, Protein separation techniques	U
2.	Introduction to spectrometry and its applications; Strategies for protein identification; Protein sequencing; Applications of proteome analysis	U
3.	Protein-protein interaction, Protein engineering; Clinical and biomedical application of proteomics; Proteome database; Proteomics industry.	E
4.	Introduction and Classification of genomics; Methods of preparing genomic DNA; Genome sequencing methods (next-generation sequencing); Databases of genomes; Genetic mapping;	U
5.	Gene variation and Single Nucleotide Polymorphisms (SNPs); Expressed sequenced tags (ESTs); Gene disease association; DNA fingerprinting; Microarray based techniques for RNA analysis; metagenomics.	U

CL:CognitiveLevels(R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	0.0444			P. S. S.	POs	80194	2.5		SKA L	Zo CASA	ZE SWIJE	PSO	\$1.29 B.A.		128399	
	1	2	3	4	5 .	6	7	8	9	10	11	1	2	23	4	- 5
COL	3	3	3	3	2	3	2	3	2	3	3	3	3	3	3	2
CO2	3	3	3	3	2	3	2	3	2	3	3	3	3	3	3	2
CO3							<u> </u>		 		<u> </u>	<u>├</u>	 	 	 	

(

	3	3	3	3	T											
GO4	3	3	3		1-	2	2	3	2	3	3	3	2	3	2	i
CO5	3	3	1	3	-	2	2	3	2	3	3	3	2	3	2	1
"3"-St	rong;"2"_	Mode	ate:"1	"-T o	2 2 113.1	2	2	3	2	3	3	3	2	3	3	2
			,	-20	M [M	Corre	clation	1								

Detailed Syllabus: BE1001 Genomics and Proteomics Unit Topics No. No. of No. Lectures I Introduction and scope of proteomics; Protein separation techniques: ion 18 exchange, size-exclusion and affinity chromatography techniques; Polyacrylamide gel electrophoresis; Isoelectric focusing (IEF); Two dimensional PAGE for proteome analysis; Image analysis of 2D gels. II Introduction to mass spectrometry; Strategies for protein identification; 2 12 Protein sequencing; Protein modifications and proteomics; Applications of proteome analysis to drug. III Protein-protein interaction (Two hybrid interaction screening); Protein 3 16 engineering; Protein chips and functional proteomics; Clinical and biomedical application of proteomics; Proteome database; Proteomics ĪV Introduction and Classification of genomics; Methods of preparing 14 genomic DNA; Genome sequencing methods (next-generation sequencing); Databases of genomes; Genetic mapping; Mapping of human genome; Human genome project; Hap Map Project, The genome project, and The ENCODE Project. ٧ Gene variation and Single Nucleotide Polymorphisms (SNPs); Expressed 15 5 sequenced tags (ESTs); Gene disease association; DNA fingerprinting; Microarray based techniques for RNA analysis; metagenomics.

BOOKS SUGGESTED:

SN	Author.	Book							
1	John Wiley & Sons (1999)	Cantorand Smith, Genomics							
2	Arthur M Lesk, Oxford University Press, 2007	Introduction to Genomics							
3	R.M. Twyman 2004	Principles of Proteomics, BIOS Scientific Publishers							
4	P. Michael Conn 2003	Handbook of Proteomic Method. Humana Press, Totowa, New Jersay, USA							
5	L. Stryer 2007	Biochemistry, W. H. Freeman and Co., New York							

Integrated M.Sc. Semester - X

Program	Subject	Year	Semester
Integrated M.Sc.	Botany	5	X

69

and

BE1002	T	Nanobio	otechnology	Elective
Credit			Hours Per Week (L-T	Г-Р)
7.80 (14)		L:	T	P · · ·
5		4	1	U
Maximum Marks	S		CIA:	ESE
100			60	40

Learning Objective (LO):

Course helps to understand numerous applications of nanotechnology in a wide variety of disciplines. Targeted drug delivery, diagnosis of diseases, bioimaging, nanomedicines, nanoarrays, and gene therapy are all being investigated as nanobiotechnology applications in biomedical sciences.

Course Outcomes (CO)

	Outcomes (CO):	
	Expected Course Outcomes	CL
No.	At the end of the course, the students will be able to:	
1.	Concept of Nano- biotechnology, Historical background, Development. Fundamental sciences	U
	and broad areas of Nanobiotechnology.	
2.	Nanomaterial in biotechnology - nanoparticles, quantum dots, nanotubes and nanowires etc.	U
	Nanostructures-Overview and introduction,	
3.	Biosensors, Application of various transducing elements as part of nanobiosensors.	E
4.	Miniaturized devices in nanobiotechnology - types and applications, Biological nanoparticles	Ap
L	production - plants and microbial, methods, Properties, Characterization and applications.	
5.	Nanobiotechnological applications in health and disease	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	7452/148501A	POs														
	1	2	. 3	#4	5	* 6°	≈7 €	8	. 9	10	211	10	2	3.	4	∴ 5⊹:
CO1 (3	3	3	2	3	3	3	3	2	3	2	3	2	3	2	2
CO2	3	3	3	3	3	3	3	3	2	3	3	3.	3	3	3	2
CO3	3	3	3	3	2	3	3	3	1	3	3	3	3	3	3	1
CO4	3	3	3	3	2	3	3	3	1	3	3	3	3	3	3	1
CO5	3	3	3	3	2	3	3	3	2	3	3	3	3	3	3	2

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BE1002 Nanobiotechnology

	Detailed by Habest Distore I talle block of the		
Unit No.		No. of Lectures	
I	The nanoscale dimension and paradigm, various definitions and Concept of Nano- biotechnology, Historical background, Development. Fundamental	12	l
	sciences and broad areas of Nanobiotechnology.		
II	Nanomaterial in biotechnology - nanoparticles, quantum dots, nanotubes and	. 18	2

And Cign

unl

	nanowires etc. Cell – Nanostructure interactions. Protein-based Nanostructures, Cell as Nanobio-machine, DNA-Protein Nanostructures-Overview and introduction, DNA- Protein conjugates in microarray technology.		
Ш	Biosensors; molecular recognition elements, transducing elements. Applications of molecular recognition elements in nanosensing of different analytes, Application of various transducing elements as part of nanobiosensors.	16	3
IV	Miniaturized devices in nanobiotechnology - types and applications, lab on a chip concept. Biological nanoparticles production - plants and microbial, methods, Properties, Characterization and applications.	14	4
V	Nanobiotechnological applications in health and disease - infectious and chronic. Nanobiotechnological applications in Environment and food - detection and mitigation.	15	5

BOOKS SUGGESTED:

SN	Author	Book	
1	Christof M, Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley VCH 2004	Nanobiotechnology: Concepts, Applications ar Perspectives	nd
2	Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.	Nanobiotechnology-II more concepts ar applications.	nd
3	P. Michael Conn 2003	Nanotechnology in Biology and Medicine	

		Integrated M.S	Sc. Semester - X					
Program		Subject	Year		Semester			
Integrated M.Sc.		Botany	5		X			
Course Code		Cour	se Title		Course Type			
BOE1001		Plant Gene	lant Genetic Engineering Elective					
Credit			Hours Per Week (L-T-	P)				
		L	T		P			
5		4	1		0			
Maximum Mark	S		CIA		ESE			
100			60		40			

Learning Objective (LO):
It will provide understanding to introduce traits such as pest and disease resistance, improved protein quality, and herbicide tolerance from previously unavailable sources. Plant transformation provides a key tool for much basic research.

Course Outcomes (CO):

-	CO	Expected Course Outcomes At the end of the course, the students will be able to:	Œ
-	I.	Understanding of basic of gene transformation in plants, vector construction and mode of Agrobacterium infection	U
	2.	Understanding the manipulation in various gene involved with nutrient uptake and biotic	υ

	abiotic stress	F
3.	Evaluation of marker assisted selection and increased production of useful molecules	Ap
4.	Application of genetic engineering in chloroplast transformation and gene	Wh
	knockout/knockdown	
5.	Understanding of plant metabolic engineering and application of secondary metabolites	Ap_

Understanding of plant metabolic engineering and application of secondary metabolics CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	POs															
						6		8.	9	10	11	1	2	3	4	5
CO1'	3	3	3	3	3	3	3	2	2	3	3	3	3	2	3	3
CO2	3	3	3	3	3	3	2	2	3	2	2	3	3	2	3	2
CO3444	3	3	3	3	3	3	2	2	3	2	2	3	3	2	3	1
CO45.65	3	3	3	3	2	2	2	2	2	2	2	3	2	2	3	1
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BOE1001 Plant Genetic Engineering

CHOICE OF THE REAL PROPERTY.	Detailed Synabus: BOETOOT Frant Generic Engineering		MARK STREET
Unit No.	The second of th	No. of Lectures	-CO - Ño:
I	Plant transformation vectors and methods: T-DNA and viral vectors; Selectable marker and reporter genes, Plant transformation by Agrobacterium sp., Molecular mechanism of T-DNA transfer; in planta transformation; Direct gene transfer methods in plants.	14	1
П	Genetic engineering for increasing crop productivity by manipulation of Photosynthesis, Nitrogen fixation, Nutrient uptake efficiency. Genetic engineering for biotic stress tolerance (Insects, fungi, bacteria, viruses, weeds). Genetic engineering for abiotic stress (drought, flooding, salt, metal and temperature)	12	2
Ш	Genetic engineering for quality improvement of Protein, lipids, carbohydrates, vitamins & mineral nutrients, Plants as bioreactor, Marker-assisted selection of qualitative and quantitative traits. Concept of gene synteny, Concept of map-based cloning and their use in transgenics.	16	3
IV	Chloroplast transformation; Transgene analysis, silencing and targeting; Marker-free and novel selection strategies; Multigene engineering; Gene knock-down by ribozymes, antisense RNA and RNA interference.	18	4
v	Plant Metabolic Engineering. The concept of secondary metabolites, Historical and current views, Importance of secondary metabolites in medicine and agriculture, Introduction to various pathways, Flavanoid pathway, Terpenoid pathway, Polyketoid pathway, Plant vaccine.	15	5

BOOKS SUGGESTED:

SN	Author	Book
1	Bhojwani S.S. & Razdan M.K. (Elsevier)	Plant Tissue Culture: Theory and Practice
2	Slater A. Scott N. & Fowler M. Oxford University Press Inc.	Plant Biotechnology: The Genetic Manipulation of Plants
3	Chrispeels M.J. & Sadava D.E. Jones and Barlett Publishers	Plants, Genes and Crop Biotechnology

egga-

on

4	Primrose S. B. & Twyman R. M. Blackwell Publishing.	Princip	oles of C	iene Man	ipulatio	on and G	enomics
5	Gamborg O. L & Phillips G. C. Springer	Plant	Cell.	Tissue	and	Organ	Culture:
L	Verlag.			Methods.		0.8	

		Integrated M.S	Sc. Semester – X					
Program		Subject	Year	Semester				
Integrated M.Sc.		Botany	5	X				
Course Code		Cour	se Title	Course Type				
BO E1002		Plant Micr	Plant Microbe Interaction Electiv					
Credit			Hours Per Week (L-T-	P)				
			T	, P.				
5		4	1	0				
Maximum Mark	s -		CIA	ESE ,				
100			60	40				

Learning Objective (LO):

It will provide Understanding of the molecular mechanisms of plant-microbe interaction which would help develop innovative genetic engineering strategies of symbiosis, mutualism, and disease resistance through gene editing, RNA silencing, and other approaches.

Course Outcome (CO):

CO Nô.	Expected Course Outcomes As the end of the course, the students will be able to:	CII.
1.	Understanding of recent development in plant pathology, Significance of plant diseases, and plant-microbe associations	U
2.	Know about the beneficial Plant - Microbe association	U
3.	Better understanding of Parasitism and disease development, Pathogenecity, host range of pathogens, disease cycle and epidemics.	E
4.	Deeper insights of biotrophic and necrotrophic fungi, Virus and Viroid genes involved in pathogenicity	Ap
5.	Have intense knowledge of Molecular genetics of plant disease susceptibility and resistance	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course:

POCO	3.56°136'A	55.79°		480	POs	1.5		1.775	1 - 1 2	T LONE	5.35 E T	PSO	8. 8	114	1817	120
	1	2	3	4	. 5	6	7	8	9	10	11	1	2	3	4	5
CO1.	3	3	3	3	2	3	2	2	2	3	3	3	3	2	3	3
CO2	3	3	3	2	3	2	2	3	2	3	2	3	2	3	2	3
CO3	3	3	3	3	3	3	2	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	1
CO5 915	3	3	3	3	3	3	2	3	2	3	3	3	3	3	3	l

"3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: BOE1002 Plant Microbe Interaction

Contract to the second	Detailed Synabus: BOE1002 I lant Wile 1000 I library	No. 60	CO
Vnit No.	Topies 2	Lectures	Ño.
Ī	History of Plant pathology and recent developments: Significance of plant diseases, and pathology, types of plant-microbe associations (pathogenic-bacteria, virus, fungi, and symbiotic).	12	I
11	Beneficial Plant - Microbe interactions (molecular aspects): a. Nitrogen fixing bacteria and blue green algae b. Mycorrhizal association c. Phytohormones and Biocontrol antibiotics	16	2
III	Parasitism and disease development: Pathogenecity, host range of pathogens, disease cycle and epidemics.	18	3
IV	Molecular biology of pathogenicity: Mechanisms of variability in pathogens, pathogenicity genes and mechanisms in pathogenic bacteria, biotrophic and necrotrophic fungi, Virus and Viroid genes involved in pathogenicity, Agrobacterium and plant interaction-a model system.	14	4
V	Molecular genetics of plant disease susceptibility and resistance: Types of plant resistance to pathogens (R gene resistance, quantitative and monogenic), basal and induced defense mechanisms, pre-formed inhibitors of pathogens, gene for gene interaction in plant defense, Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), Recognition mechanism and signal transduction during plant - pathogen interaction.	15	5

BOOKS SUGGESTED:

iSN	Author and a second at the sec	Book
1	Agrios G. N. Academic Press	Plant Pathology
2	Dickinson M. BIOS ScientificPress	Molecular Plant pathology
3	Jeng-Sheng H. T Kluwer Academic Pubs. T Gen 904 (ii) MEDICA	Plant Pathogenesis and Resistance: Biochemistry and Physiology of Plant- Microbe Interactions

Integrated M.Sc. Semester - X

1111	grated Mist. Bemester - A			
Subject	Yzw	Standage		
Botany	5	X		
Cours	é Title	Course Type		
Plant Tiss	Elective			
	Hours Per Week (L-T-P)			
Line St.	T	P		
4	1	0		
	(Gy,	ESIL (1		
	60	40		
	Botany Cours Plant Tiss	Botany 5 Course Title: Plant Tissue Culture Hours Per Week (L-T-P) L T 4 1		

Learning Outcome (LO): This course offers a comprehensive insight and systematic learning of how plants regenerate from explants and important cues for plant micropropagation and genetic modification.

Se 13 ac

un

Course Outcomes(CO):-

37.	માં આવ્યાં કર્યા (આપ્સ-૧૦)માં ભાગાંતું. - વેલ્પોલ કર્યાન ભાગાંતું કર્યાન સામાન માને આ માને આ માને આ માને કર્યાની છે. -	
	The state of the s	U
	the state of the s	U
	somaclonal variation and synged technology	
1	For detail study of protoplast technology, somatic hybridization and cybridization with their application in plant research.	Ap
5	Production of secondary metabolites using plant cell cultures and general methods of	Ap
CL:Comit	phytochemical analysis	איי

CL:CognitiveLevels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Mapping for the course-

POCO) 45 W.S.	POs									41936								
	્ર1ૅ	2	3	4 .	-5	6 -	7		9	10	11	12	13	%1 %	2	3 €	4	5	6
CO1:	3	2	3	2	2	3	3	3	3	3	3	3	1	3	3	1	3	3	2
.: CO2.4	3	1	-	1	1	3	3	3	3	1	3	3	1	3	3	3	3	1	1
(\$ CO3 \$;	3	3	3	3	3	3	3	3	3	1	3	3	1	3	3	1	3	1	3
62 CO414	3	2	2	3	3	3	3	3	3	1	3	3	1	3	3	I	3	1	1
CO5	3	1	1	3	2	3	-2	3	3	1	3	3	1	3	3	1	3	1	1

Detailed Syllabus: BOE1003 Plant Tissue Culture

Unif	Tiopies	No:of Reduces	(0)
<u>Unit-I</u>	Plant Tissue Culture- History, scope and applications, Concept of cell totipotency, Concept of asepsis and methods of sterilization, Media-components, preparation and types, Maintenance of cultures- environmental conditions, Explants selection, sterilization and inoculation	15	1
Unit II	In vitro regeneration of plants- Stages of micropropagation Different pathways of micropropagation (Enhanced axillary branching, de novo shoot bud differentiation, somatic embryogenesis and callus organogenesis) and their applications. Micropropagation in forestry and horticulture.	15	2
Unit-III	Organ Culture- Anther, Pollen, Embryo and Endosperm culture, Meristern culture and their applications, Somaclonal variation-its causes and consequences, its role in crop improvement, Synseed production and applications.	15	3
<u>Unit-IV</u>	Protoplast technology: Protoplast isolation, culture, regeneration and viability tests, Methodology adopted in protoplast fusion, Somatic hybridizationandcybridization and application in plant research.		4
<u>Unit-V</u>	Secondary plant metabolites: Production by use of cell culture technology. Bioreactors, types and uses. Hairy root culture, cell immobilization. General methods of phytochemical analysis, methods of extraction, isolation,	15	5

separation, identification and analysis. Production, function and uses of Alkaloids, phenols, tannins and antibiotics in culture

Books Recommended:

- 1. Bhojwani S.S. and Razdan M.K. (1983). Plant Tissue Culture: Theory and Practice. Elsevier, Amsterdam.
- 2. Razdan M.K., 2002. Introduction to Plant Tissue Culture. Oxford & IBH.
- 3. Reinert J. and Bajaj Y.P.S.1977. Plant Cell Tissue and Organ Culture. Springer Verlag.
- 4. Bhojwani S.S. 1990. Plant Tissue Culture: Application and Limitations. Elseiver.
- 5. Purohit, S.D. 2013. An Introduction to Plant Cell, Tissue and Organ culture. Prentice Hall, India.

		Integrated M.S	Sc. Semester – X					
Program		Subject	Year	. 1	Semester			
Integrated M.Sc.		Botany	5	((-Z-) 4 -3	X			
Course Code		Cour	se Title	1	Course Type			
BOE1004		Plants for 1	Plants for Human Welfare Elective					
Credit			Hours Per Week (L-T	P) :				
		Kel L	T - Comment		P			
5	·	4	1		0			
+ Maximum Mark	S	**********	CIA		ESE			
100			60	T	40			

Learning Objective (LO):

It will provide knowledge that Plants provide many products for human benefits, such as timber, fibres, medicines, dyes, firewood, pesticides, oils, and rubber. Medicinal plants provide major source of molecules with medicinal properties due to presence of natural compounds.

Course Outcomes (CO):

	e Outcomes (CO):	
CO No.	Expected Course Outcomes At the end of the course, the students will be able to:	टाः
1.	A general overview of economically important plants and their role in human welfare	U
2.	Medicinal: Traditional plants as source of drugs against several diseases Plant secondary metabolites; classification, knowledge of extraction, isolation, characterization and elicitation of bioactive metabolites.	U
3.	Nutraceuticals and functional foods, transgenic approaches and constraints for improvement	U
4.	Plant-based biofuels Extraction and economic viability; application as alternate source of fuel	Ap
5.	Plants as a source of timber, with special reference to their improvement through breeding and genetic transformation.	Ap

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

CO-PO/PSO Manning for the course:

CO-I OIL DO	" Trupping	104 411		12000												
POCO	8.144.45.5			144	POs	State .	er _k	1 - 2 87		e ji iliye		PSO	0.540	Tally ex		
	364.1 339	2	3	4	5	6	7	8	9	10	11	1	2	3	4	5
COI	3	3	3	2	3	3	2	2	1	2	3	3	3	2	2	2
CO2	3	3	3	2	3	3	2	2	ı	2	3	3	3	2	2	2

vam _ U

GO3 3 3 3 3												
CO4 3 3 3 2	3	3	2	3	1	2	3	3	3	3	2	1
GOS 3 3 2	3	3	2	3	1	2	3	3	3	3	2	1
"3"-Strong;"2"-Moderate;"1"-Lov	3_	3	3	3	2	3	3	3	3	3	3	3
o	w;"-"N(Corr	elatio	n				<u></u>				

Detailed Syllabus: BOE 1004 Plants for Human Welfare Topics No. of Lectures A general overview of economically important plants and their role in 1 12 human welfare as food, oil, drugs, nutraceuticals, fuel. Food crops: Cereals; Spices and condiments; Alcoholic and non-alcoholic beverages. II Medicinal: Traditional plants as source of drugs against several diseases 2 15 such as cancer, diabetes, malaria, dengue, psoriasis, etc. Plant secondary metabolites; classification, knowledge of extraction, characterization and elicitation of bioactive metabolites. III Nutraceuticals and functional foods; Important plants such as Aloe vera, 3 16 Piper, Withania, Ginseng, Amaranthus etc. yielding antioxidants and nutraceutical compounds. Edible and non-edibleoils: Oil yielding plants, transgenic approaches and constraints for improvement indifferent oils. Essential oils. īV Plant-based biofuels e.g., Difference between first and 2nd generation 4 14 biofuels, Jatropha, Pongamia, Zea mays, Madhuca, etc. Extraction and economic viability; application as alternate source of diesels, Bioelectricity. 5 Plants as a source of timber: e.g., Tectona grandis, Salix sp., Dalbergia 18 sisso, Fibre yielding plants: Cotton (Gossypium sp.), Jute (Corchorus sp.) with special reference to their improvement through breeding and genetic

BOOKS SUGGESTED:

transformation e.g., Bt cotton.

	V2 20GGE21ED.	
SN	Author	Book
1	R.N. Chopra, S.L. Nayar and I.C. Chopra, 1956. C.S.I.R, New Delhi	Glossary of Indian medicinal plants
2	Kanny, Lall, Dey and Raj Bahadur, 1984. International Book Distributors	The indigenous drugs of India
3	Agnes Arber, 1999. Mangal Deep Publications.	Herbal plants and Drugs
4	Acharya, Deepak; Anshu, Shrivastava (2008)	Indigenous Herbal Medicines: Tribal Formulations and Traditional Herbal Practices. Jaipur, India: Aavishkar Publishers

Integrated M.Sc. Semester - X

: Company	જેમાં) વિશ	Sent.	l Signesia
Integrated M.Sc.	Botany	5	X
Course Code	Course	Title -	Course Type
BOE1005	Phytochemistry and	Herbal Technology	ELECTIVE

77

we

	L.	Τ,	P
5	4	1	V
જિક્કિસ્સામાન (ઇ ક્કિ)ke (TV.	
100		60	40

Learning Objective (LO):

Through this course students will understand the importance of phytochemistry which will actually add therapeutic value to the medicinal plants. They will know the various techniques involved in the phytochemistry and get familiarize the bio-active components present in the plants.

Course Outcomes(CO):

টোট: ডিট	िहित्ताः अस्ति क्षित्राहरू होता कामान्यः ्रिकोतः अस्ति अस्ति क्ष्मान्यः, तोतः अस्ति इत्यान्यः, स्त्रीतिकः अस्ति अस्ति अस्ति ।	(A)
1	Introduction of phytochemistry and herbal technology, understanding of primary and secondary metabolites and their uses, and methods of herbal technology according to WHO guideline.	U
2	Detail knowledge of various techniques used for extraction, isolation and purification of phytochemicals.	L
3	Knowing techniques appropriately used for characterization of various phytochemicals.	U
4	Exploring the protocolsand parameters of standardization and validation of phytochemical.	Ap
5	Better understanding of validation of drug – guidelines, testing, storage and packing of drugs.	Ap

CL:CognitiveLevels(R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

PO-CO/PSO Mapping of the course-

POCO		44 CM	Sp. 806.				POs			×-,20	\$ \$400 E	gir Stop		1803/213		PS	0	Company of	23,500 N
	1	2	3	4	5	6	7	8	9	10	111	12	13	%1 <u></u>	2	3	4	5	6
+ CO1	3	2	3	3	2	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO2	3	2	2	3	2	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO3	3	2	2	3	2	3	3	3	3	1	3	3	1	3	3	1	3	3	1
CO4	3	2	2	3	3	3	3	3	3	1	3	3	1	3	3	1	3	3	1
COS	3	1	1	3	2	3	2	3	3	1	3	3	1	3	3	i	3	3	1

Detailed Syllabus: BOE 1005 Phytochemistry and Herbal Technology

Unit No.	Phytochemisrty: Scope of phytochemistry, plants as source of chemical compounds, primary and secondary metabolites and its applications; Definition, source of herbal raw materials, identification, authentication, standardization of medicinal plants as per WHO guidelines and different herbal pharmacopoeias; Natural pigments, natural products as markers for new drug discovery.	No. of Lectures 12	(0) 1
<u> </u>	Extraction, isolation and purification of phytochemicals: Selection of plant samples, processing and storage of samples for extraction; Factors	15	2

AN O GIAM

iene

111	influencing the choice of extraction, principles of extraction methods, infusion, decoction, digestion, maceration, percolation, solvent extraction, fluid extraction, ultrasound, microwave assisted extraction, advantage and disadvantage involved in each method; Isolation of selected primary and secondary metabolites – amino acids, proteins and carbohydrate; Phenolics, flavonoids, alkaloids, lipids, oils, terpenes and saponins; Purification techniques for primary and secondary metabolites – solvent-solvent fractionation and chromatography techniques.		
	Characterisation of Phytochemicals: Preliminary, qualitative and quantitative techniques — paper chromatography, thin layer chromatography, column chromatography—HPLC, GC (qualitative and quantitative), colour reactions for amino acids, sugars, phenolics, flavonoids, alkaloids, terpenes, saponins, oils, lipids; Spectroscopic estimations/gravimetric determination of total sugars, amino acids, proteins, phenolics, flavonoids, alkaloids, terpenes, saponins, oils, lipids; Characterisation using spectroscopic techniques—UV/VIS, FTIR, DSC (differential scanning calorimeter), NMR, MS, MALDI. XRD—single crystal and powder.	16	3
IV	Standardisation and Validation of Phytochemical: Quality determination of herbal drugs; Role of processing methods and storage conditions on quality of drugs; Standardisation parameters- impurity limit, ash content, extractable matter, moisture content, other phytochemicals, microbial contaminants, pesticides;	14	4
V	Validation of drug – guidelines, limit of detection and quantification of impurities, organoleptic properties, physical, chemical, biological characteristics, stability testing, storage conditions and packing system/unit.	18	5

Books recommended

- 1) Braithwaite, A. and Smith, F.J. 1996. Chromatographic Methods. 5th edn., Blackie Academic & Professional, London.
- 2) Bourne, U.K. Kokate, Purohit, C.K. and Gokhale S.B. 1983. Pharmacognosy. NivaliPrakashan Publication.
- 3) Sadasivam. S. and A. Manickam, Bio Chemical methods 2ndedn. New Age International Pvt Ltd. New Delhi.
- 4) Harborne, J.B. 1984. Phytochemical Methods, 2ndedn. Chapman and Hall, London.
- 5) Harborne J.B., 1973. Phytochemical methods a guide to modern techniques of plants analysis. Chapman and Hall Ltd. London.

	Integrat	ted M.Sc. Semester – X	
Present	- \$naya	78gati	अन्या स्यक्
Integrated M.Sc.	Botany	5	X
: Course Code	Course	Title	Course Type
BOE1006	Plant Secondary Met	tabolite Production	ELECTIVE
Credit		Hours Per Week (L-T-P	
	L	T	P ~
5	4	1	0
/Мжатаат Ую	.	ÜPA	IEST:
100		60	40

Learning Objective (LO):

Studying plant secondary metabolite and techniques used for their production with respect to their relevant functions encourages students to explore the possibility of plant secondary metabolites in modern medicines.

Course Outcomes (CO):-

((0) (%)	isanseleli Comse Onteomes Artite groboli ha comse the anglents will be able to	(GIL
l	What are secondary metabolites and their classes? To also know about bioactive compound production from fungi and other microbes.	L
2	Detail knowledge of secondary metabolite production using plant cell culturing methods.	U
3	Developing a better understanding of pharmaceutically important drugs and their production methods, basic concepts of biotransformations and cell immobilization.	L
4	Get familiarized with genetic engineering for recombinant protein production and genetic manipulation in the pathways of secondary metabolite synthesis. To understand edible vaccine and nutraceuticals.	Ар
5	To acquaint with bioreactor technology and plant tissue culture industries in India.	Ap

CL:Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create)

PO-CO/PSO Mapping:

POCO	84.5	1000	1		Stry's .	27.7	POs		gard.			all.	3. 42-m	8839		> PS	SO 🐪		
	1	2.2	3	4	5	6	5 7 .%	-8	9.	10	11	12	13	417	2	∂ 3 €	≋4 €	5	6
CO1-3:	3	3	3	1	2	3	2	3	3	1	3	3	3	3	3	1	3	3	3
CO2	3	3	2	1	1	3	3	3	3	1	3	3	2	3	3	1	3	3	3
CO3	-3	3	3	2	2	3	3	3	3	1	3	3	2	3	3	1	3	3	3
1. CO4**	3	3	2	1	1	3	3	3	3	1	3	3	2	3	3	1	3	3	3
CO5 #1	3	3	2	1	1	3	3	3	3	1	3	3	2	3	3	1	3	3	3

Detailed Syllabus: BOE-1006 Plant Secondary Metabolite Production

Carrier Marie Carrier	Detailed Synabus. BOE-1000 I fait Secondary Victabonie I found	and Company of the Company of the Company	Market Commence of the Commenc
Unit		NO. 01	(C(0):
No.		Lectures	
I	Secondary metabolites: Primary and secondary metabolites. Principal classes of	15	1
	secondary metabolites with their occurrence and classification: Alkaloids,		
	Terpenes and Shikimic acid and mevalonate pathways. Bioactive molecules	- · · · · · · · · · · · · · · · · · · ·	
	from fungi (Fungal metabolites, Mycotoxins, colorant, enzymes) and		
	Microorganisms.		
II	Production of secondary metabolites: Basic concept of Callus and cell	15	2
	suspension cultures. Nutrients and media, approaches and factors affecting the		
	production of secondary metabolites (optimization, effects of auxin, selection,		1
	hairy roots, elicitation, precursors, concept of growth and production media).		
111	Production of pharmaceutically important drugs in culture: alkaloids	15	3
	(Catharanthus, Papaver), anti-tumour agents (taxol, podophyllotoxins,		
	camptothecine), saponins and sterols (diosgenin, guggul, ginseng), food		1 1
	additives (sweetners, flavours andcolours). Basicconcepts of		
1	Biotransformations and Cell Immobilization.		
īV	Molecular farming: Production of drugs and recombinant protein by genetic	15	4
	engineeringtechnology, metabolic engineering for the production of useful		1

AND OF

lly

	metabolites (Pathway manipulation of Tropane and Indole alkaloids), Edible vaccines, products on market, Production of Artemisinin in Artemisia annua. Basic concepts of functional foods. Nutraceuticals (Classification of Nutraceuticals, Phytochemicals as nutraceuticals).		
V	Bioreactors: Types of bioreactors (stirred tank, air lift, membrane type, immobilized celland wave bioreactors), process and operation for small and large bioreactors. Bioreactorfor production of biomass (secondary metabolites and for micropropagation), scope of commercialization of bioreactor based technologies. Plant tissue culture industry in India.	15	5

BOOKS SUGGESTED:

- 1. Plant Secondary Metabolites by A. Crozier et al., Blackwell Publishers.
- 2. Biotechnology Secondary Metabolites by K.G. Ramawat& J.M. Merillon, Science Publishers Inc.
- 3. Natural Products from Plant II Edition by L.J. Cseke et. al., Taylor and Francis.
- 4. Bioactive Molecules and Medicinal Plants by K.G. Ramawat and J.M.Merillon, Springer, Germany.
- 5.Plant-derived Natural Products by A.E. Osbourn & V. Lonzotti, Springer, Germany

Integrated M.Sc. Semester - VIII

	Subject .	Year		Semester :
	Botany	4		VIII
	Cour	ie Title		Course Type
	Statistical Tools i	n Biological Resea	arch S	kill Enhancement Course
		Hours Per Week(L-T-P)	
	$(\mathbf{j},\mathbf{L}_{-1},\mathbf{j}_{+1},\mathbf{j}_{+1},$	T		P
	0	0		4
3		CIA ,		ESE
		60		40
		Botany Cours Statistical Tools i	Botany 4 Course Title Statistical Tools in Biological Reserve Week(L T 0 0 CIA	Botany Course Title Statistical Tools in Biological Research S Hours Per Week(L-T-P) L T 0 CIA

Learning Objective (LO):

To understand various statistical tools used in biological research.

Course Outcomes (CO):-

	Expected Course Outcomes	(e)
	Ar the end of the course, the students will be able to:	
1.	Basic knowledge of SPSS software tool, Preparation and presentation of data	A
2.	Provide knowledge of calculating Descriptive statistics	E
3.	Provide knowledge of Parametric and Non-parametric test	E
4.	Provide knowledge of ANOVA, Comparison of means, preparation of different charts	E
5.	Provide basic knowledge of NTSYS Pc software, Jaccard coefficient, Principle component	E
	Analysis, Dendrogram construction	
	11 Y and OR Remarks at 1 Indicated in the Annual Annual Experience CO	<u> </u>

CL: Cognitive Levels (R-Remember; U-Understanding; Ap-Apply; An-Analyze; E-Evaluate; C-Create).

81

we

CO-PO/PSO Mapping for the course:

POCO .	POs															
	1	2	3	4	5	6	7	8	9	10	111	1	2	3	4	5
CO1	3	3	3	2	2	1	2	1	_	2	2	3	1	2	_	3
CO2	3	3	3	2	2	i	2	<u> </u>		2	5	3	1	2	-	3
GO3	3	3	3	2	2	 	2	1		2	5	3	1	5	<u>-</u>	2
CO4	3	3	3	2	2	 	2	1		2	2	3	i	2		2
CO5	3	3	3	1	2	 	2	1	- -	2	2	3	1	5		2

[&]quot;3"-Strong;"2"-Moderate;"1"-Low;"-"No Correlation

Detailed Syllabus: SEBL801 Statistical Tools in Biological Research

DOTTE THE	Betaneu Synabus: SEBL801 Statistical Tools in Biological Resea	ren	
Cont	Ropies	No. of	*1CO
No.		Ladines	- No.
I	Introduction to SPSS software tool, Basic data preparation, Creating	5	1
	variables, entering data, Data management using SPSS		
II	Experimental design strategy, Descriptive statistics using SPSS tool:	5	2
	Frequency distribution, Data types/Binomial Distribution, Poisson		
	Distribution, Normal Distribution, Measures of central tendency, Measures		
	of variability / Dispersion, Measures of deviation from the Normality	W. 1	
III ·	Parametric: One-sample t-test 2.4.2 Independent Sample t-test 2.4.3 Paired	7	3
	Sample t-test and Non-parametric tests, ANOVA, Comparison of means,		
	Investigating relationship between variables-Correlation and Regression,		
	Pearson Correlation, Spearman Rank Correlation, Partial Correlation		
IV	Making Graphs and Charts using SPSS: Line Graphs, Bar Charts, Pie Charts,	7	4
	Histograms, Scatter Plots, Box Plots, Error Bars, High-Low Bars, Population		
	Pyramids		
V	Introduction to NTSYS Pc software, Creating data file, Jaccard coefficient,	6	5
	Principle component Analysis, Dendrogram construction		

apin a

coul