पाठ्यक्रम निर्माण करने हेतु चेक लिस्ट

(पाठ्यक्रम निर्माण के दौरान नीचे लिखे सभी बिन्दुओं का समावेश किया जाना अनिवार्य है)

क्र.	विवरण	भली-मांति परीक्षण कर हाँ / नहीं उल्लेख करें					
1	कव्हर पेज के सबसे ऊपर में विश्वविद्यालय का Logo छपा है अथवा नहीं ?	हों					
2	Logo के ठीक नीचे विश्वविद्यालय का नाम (बड़े अक्षरों में) अंकित है अथवा नहीं ?	हों					
3	तत्पश्चात तीसरी पंक्ति में शब्द "CURRICULUM & SYLLABUS" अंकित किया गया है अथवा नहीं ?	हा					
4	उसके बाद चौथी पंक्ति में अर्थात "CURRICULUM & SYLLABUS" के ठीक नीचे कोष्टक में (Based on CBCS & LOCF) उल्लेख है अथवा नहीं ?	क्रॅ					
5	"Syllabus" के ठीक नीचे पांचवा पक्ति में <u>विषय का नाम उल्लेख</u> करेंगे जैसे :- M.Sc Physics / M.A History उल्लेख है अथवा नहीं ?	हा					
6	विषय के नाम के नीचे पंक्ति में आवश्यकतानुसार परीक्षा प्रणाली का स्पष्ट उल्लेख करेंगे जैसे :- Semester System / Annual Pattern. उल्लेख है अथवा नहीं ?	<u>ट</u> हा					
7	परीक्षा प्रणाली का उल्लेख करने के बाद नीचे पंक्ति में सेमेस्टर / कक्षा का उल्लेख करेंगे जैसे— I-IV Semester / पूर्व एवं अंतिम वर्ष। उल्लेख है अथवा नहीं ?	हा					
8	कक्षा / सेमेस्टर के नीचे पाठ्यक्रम का प्रभावशील सत्र स्पष्ट उल्लेख करेंगे। उदाहरण : एक वर्षीय पाठ्यक्रम में सत्रः 2025-26, दो वर्षीय पाठ्यक्रम में सत्रः 2025-27 चार वर्षीय पाठ्यक्रम है तो सत्रः 2025-29। उल्लेख है अथवा नहीं ?	È					
9	अध्ययन मंडल की बैठक में उपस्थित सभी सदस्यों द्वारा बैठक तिथि का उल्लेख करते हुए अपने नाम के सम्मुख हस्ताक्षर किया गया हैं अथवा नहीं ?						
	ध्यान रखने योग्य अन्य महत्वपूर्ण बिन्दु						
1	प्रत्येक प्रश्न-पत्र समान इकाई वार निर्मित है अथवा नहीं ?	Ž					
3	प्रत्येक प्रश्न-पत्रों में अंकों का उल्लेख है अथवा नहीं ?						
3	यदि सिलेबस हिंदी एवं अंग्रेजी दोनों भाषाओं में निर्मित है तो हिन्दी एवं अंग्रेजी दोनों Content में एकरूपता है अथवा नहीं ?						

4	पाठ्यक्रमों के किस अंश/किस उद्धरण को विलोपित/संशोधित कर, क्या समावेश/विलोपन किया गया है, की जानकारी कार्यवृत पंजी में सुस्पष्ट उल्लेख किया गया है अथवा नहीं ?	\frac{1}{2}
5	पाठ्यक्रम में Learning Outcomes/Objectives, Employability/Skill Development एवं Program Code, Course Code आदि उल्लेख करना अनिवार्य है, उल्लेख किया गया है अथवा नहीं ?	J) &
6	समाहित / विलोपित अंशों के समावेशन / विलोपन की <u>औचित्य को कार्यवृत्त पंजी में</u> सुस्पष्ट उल्लेख किया गया है अथवा नहीं ?	<u>\(\)</u>
7	गोपनीय विभाग को, प्रश्न-पत्र सेटिंग एवं IQAC Cell को, NAAC की आवश्यकताओं को ध्यान रखते हुए सलग्न प्रपत्र - 1 में जानकारी प्रस्तुत किया जाना अनिवार्च है, प्रस्तुत किया जा रहा है अथवा नहीं ?	<u>ن</u> هر
	पाठ्यक्रम यथावत प्रभावशील किए जाने की स्थिति में	
1	क्या पाठ्यक्रम यथावत प्रभावशील किया जा रहा है ?	<u>.</u>
2	पाठ्यक्रम यथावत रखे जाने की स्थिति में पाठ्यक्रम का कव्हर पेज को बदलना अनिवार्य है, कव्हर पेज बदला गया है अथवा नहीं ?	*
3	कव्हर पेज बदलना है साथ ही-साथ उपरोक्त बिन्दु क्रमांक 1— 8 को शामिल किया गया है अथवा नहीं ?	, B
4	कव्हर पेज को बदलने तथा उपरोक्त बिन्दु 1–8 को शामिल करने के बाद बैठक में उपस्थित सदस्य नए सिरे से तिथि का उल्लेख करते हुए <u>अपने नाम के सम्मुख</u> पुनः हस्ताक्षर <u>किए हैं अथवा नहीं</u> ?	

//प्रमाणीकरण//

प्रमाणित किया जाता है कि क्रिंगी रिक्श की अध्ययन मंडल की बैठक आज दिनांक 20/12/2024 को संपन्न हुआ। जिसमें सर्वसम्मति से निम्नांकित पाठ्यक्रम निर्मित कर प्रस्तुत किया जा रहा है :-

- 1 रम रस दी, प्रवेश परीभा
- 2 स्म. रस सी, स्मिरिकाकी
- 3 सी भी री रस (साक्रीकी)
- 4 पी रुच डी प्रवा प्रीना
- 5 पीक्ट्य औं कास्त वर्क परीता

मेरे द्वारा मली—मांति परीक्षण कर लिया गया है। उपरोक्त चेक लिस्ट में उल्लेखित यथा लागू सभी बिन्दुओं को समाहित करते हुए पाठ्यक्रम का निर्माण किया गया है। पाठ्यक्रम त्रुटि रहित है।

हस्ताक्षर अध्यक्ष अध्ययन मंडल

Profarma-1

Syllabus Revision [Session: 2025-2027]

S. No.	Name of the programme	Semester	Program · Code	Number of Papers (Course)	Name of the Paper (Course)	Paper (Course) Code	Unit	Existing content	New Content added (give details)	Existing Content deleted (give details)	% Change	New Paper (Course) introduced including value- added/ diploma/ certificate, etc
·												20
											,	

Revision in individual unit should be highlighted Revision in Lab Courses should be highlighted Sample calculation:

[A] Total Number of Courses	16
[B] Number of Courses with Syllabus revision about 20%	16
[C] Percentage of Courses revised Formula: [B/A] * 100	100%
[D] Average Percentage of Syllabus revised considering the percentage of syllabus revision in each course	100%

Pt. Ravishankar Shukla University, Raipur, (C. G.) India 492010

CURRICULUM & SYLLABI
(Based on CBCS & LOCF)

M.A. /M.Sc. Statistics

(Semester System)

Semester: I-IV

Session: 2025-27

Note: Syllabus for the session of 2025-2027 is continuing from the syllabus of Session 2024-2026 as it is.

Approved by

:

Board of Studies

: Statistics

Date

:20/12/2024

Name of Chairman

: Dr. Vyas Dubey

Name of the Member's

: Prof. Rajesh Singh

: Prof. Harekrishna

20/17/2024

M.Sc. Statistics

The Master of Science in Statistics is a two-year, four-semester program designed to provide students with a comprehensive understanding of advanced statistical tools and techniques with their applications. Through a balanced curriculum covering diverse areas, students establish a strong foundational knowledge during the initial semesters. As the program progresses, students have the flexibility to tailor their learning by choosing specialized electives that align with their interests and career goals. Upon completion of the program, students will be well-prepared for diverse career paths, including academia, research, and technology sectors. With a solid statistical background, they will excel as analytical thinkers and contribute effectively to various fields.

Program Outcomes:

Upon successful completion of the Master of Science in Statistics program, students will be able to:

PO-1	Knowledge: Demonstrate a deep understanding of advanced statistical
	concepts, theories, and techniques in various subfields of Statistics.
PO-2	Critical Thinking and Reasoning: Exhibit advanced critical thinking skills
	by analyzing and evaluating mathematical arguments, theories, and proofs,
	and by making reasoned judgments about statistical concepts and their
	implications.
PO-3	Problem Solving: Formulate abstract statistical problems and derive
	solutions using rigorous logical reasoning. Demonstrate mastery in
	constructing mathematical proofs and justifications.
PO-4	Advanced Analytical and Computational Skills: Possess advanced skills
	in statistical analysis and computation, including proficiency in using
	statistical software, programming languages, and computational tools for
	numerical simulations and data analysis.
PO-5	Effective Communication: Communicate complex statistical ideas and
	results effectively to both technical and non-technical audiences, through
	written reports, presentations, and teaching.
PO-6	Social/ Interdisciplinary Interaction: Integrate statistical concepts and
	techniques into interdisciplinary contexts, collaborating effectively with
	professionals from other fields to address complex problems.
PO-7	Self-directed and Life-long Learning: Recognize the importance of
	ongoing professional development and lifelong learning in the rapidly
	evolving field of Statistics and will exhibit the ability to continue learning
	independently or in formal educational settings.
PO-8	Effective Citizenship: Leadership and Innovation: Lead and innovate in
	various statistical contexts, contributing to advancements in the field and
DO 0	applying statistical insights to emerging challenges.
PO-9	Ethics: Demonstrate ethical and responsible conduct in statistical research,
	teaching, and collaboration, adhering to professional standards and best practices.
PO-10	Further Education or Employment: Engage for further academic pursuits,
10-10	including Ph.D. programs in statistics or related fields. Get employment in
	academia, research institutions, industry, government, and other sectors.
PO-11	Global Perspective: Recognize the global nature of statistical research and
10-11	its impact, appreciating diverse cultural perspectives in statistical practices.
L	its impact, appreciating diverse cultural perspectives in signistical practices.

PROGRAMME SPECIFIC OUTCOMES (PSOs): At the end of the program, the student will be able to:

PSO1	Understand the nature of abstract statistics and explore the concepts in further details.
PSO2	Apply the knowledge of statistical concepts in interdisciplinary fields and draw the inferences by finding appropriate solutions.
PSO3	Pursue research in challenging areas of statistics.
PSO4	Employ confidently the knowledge of statistical software and tools for treating the complex statistical problems and scientific investigations.
PSO5	Qualify national level tests like NET/GATE etc.

M.Sc. Statistics
PROGRAMME STRUCTURE

Semester	Course	Course	Course Title	Course	Hrs/	Credits		Mark	
	Nature	Code		Type (T/P)	Week		CIA	ESE	Total
	Core	SAT 110	Real Analysis and Linear Algebra	T	5	5	30	70	100
Semester-I	Core	SAT 120	Statistical Methods	T	5	5	30	70	100
	Core	SAT 130	Probability and Measures	T	5	5	30		100
	Core	SAT 140	Applied Statistics	T	5	5	30	+	100
Sem	Core	SAT 150	Lab Course I: Practical based on Course I and II	P	4	2	30	70	100
	Core	SAT 160	Lab Course II: Practical based on Courses III & IV	P	4	2	30	70 70 70 70 70	100
	Core	SAT 210	Biostatistics	T	5	5	30	70	100
	Core	SAT 220	Statistical Computing	T	5	5	30	A ESE 70 70 70 70 70 70 70 70 70 70 70 70 70	100
II-	Core	SAT 230	Stochastic Processes	T	5	5	30	70	100
<u>r-</u>	Core	SAT 240	Sampling Theory	T	5	5	30	70	100
Semester-II	Core	SAT 250	Lab Course I: Practical based on Course I and II	P	4	2	30	70	100
Se	Core	SAT 260	Lab Course II: Practical based on Courses III & IV	P	4	2	30	70	100
	Core	SAT 270	Internship	P	*	2	30	70	100
	Core	SAT310	Inference-I	T	5	5	30	70	100
	Core	SAT320	Linear Models and Design of Experiments	Т	5	5	30	70	100
	Elective-1	SAT331	Basic Operations Research	T	5	5	30	70	100
н	(Select any one)	SAT332	Demography						
[- <u>-</u> 16	Elective-	SAT341	Statistical Quality Control	T	5	5	30	70	100
Semester-III	2 (Select any one)	SAT342	Survival Analysis			- Provide P			
	Core	SAT350	Lab Course I: Practical based on Course I & II	P	4	2	30	70	100
	Core	SAT360	Lab Course I: Practical based on Course III & IV	P	4	2	30	70 70 70 70 70 70 70 70 70 70 70 70 70 7	100
	Core	SAT410	Inference-II		5	5	30	70	100
	Core	SAT420	Multivariate Analysis	T	5	5	30		100
	Elective-	SAT431	Advance Operations Research	T	5	5	30	70	100
>	3 (Select any one)	SAT432	Econometrics						
:r-I	Elective-	SAT441	Reliability Theory	Т	5	5	30	70	100
Semester-IV	4 (Select any one)	SAT442	Actuarial Statistics						
Š	Core	SAT450	Lab Course I: Practical based on Course I & II	Р	4	2	30	70	100
	Core	SAT460	Lab Course I: Practical based on Course III& IV	P	4	2	30	70	100
	Core	SAT 470	Project Work	P	4	2	30	70	100

Note:*Total 60 hours during summer vacation.

Jaser

- 1. In place of Elective Course Student can choose paper(s) from MOOC Courses (Swayam Portal) subject to the following conditions:
 - a. The chosen paper will be other than the papers offered in the current course structure.
 - b. The paper will be PG level with a minimum of 12 weeks' duration.
 - c. The list of courses on SWAYAM keeps changing; the departmental committee will finalize the list of MOOC courses for each semester.
 - d. The paper(s) may be chosen from Swayam Portal on the recommendation of Head of the Department.
- 2. The candidates who have joined the PG Programme in School of Studies (University Teaching Department), shall undergo Generic Elective Courses (only qualifying in nature) offered by other departments/SoS in Semester II and Semester III.
- 3. The candidates, who have joined the PG Programme in School of Studies (University Teaching Department), shall undergo Skill Enhancement Course/Value Added Course (only qualifying in nature) in Semester I and Semester II.

Generic Elective Courses: (Offered to PG students of other Departments/SoS only)

Semes	Course	Course Title	Course	Hrs/	rs/ Credits		Marks			
ter	Code		Type (T/P)	Week		CIA	ESE	Total		
II	SAT 520	Basic Statistics-I	T	3	3	30	70	100		
III	SAT 530	Basic Statistics-II	T	3	3	30	70	100		

Skill Enhancement/Value Added Courses: (Offered to the PG students of SoS in Statistics)

Sem	Course	Course Title	Course	Hrs/	Credits	Marks		5
ester	Code		Type (T/P)	Week		CIA	ESE	Total
I	SAT 610	Indian Knowledge System (IKS)	P	2	2	30	70	100
III	SAT 630	Programming in Python	P	2	2	30	70	100

M.Sc. STATISTICS Program

Specification of Course	Semester	No. of Courses	Credits
Core	I-IV	22	80
Elective	III-IV	04	20
Total		26	100
Additional Courses(Qua			
Generic Elective	II-III	02	06
Skill Enhancement (Value Added Courses)	III	01	02
Indian Knowledge System (IKS)	I	01	02

July

FIRST SEMESTER

Paper I: Real Analysis and Linear Algebra

Paper II : Statistical Methods

Paper III : Probability and Measures

Paper IV : Applied Statistics

Paper V: Lab Course I: Practical Based on Papers I &II

Paper VI : Lab Course II: Practical Based on Papers III & IV

Paper-I

REAL ANALYSIS AND LINEAR ALGEBRA

Course objective: Techniques of Linear Algebra are useful in various statistics coerces are covered in this course. After learning this course, the student will be well equipped to apply these techniques in many major Statistics courses like Linear Inference, Multivariate Analysis and Operations Research etc.

Course Outcome: On successful completion of the course, the student will be able to:

CO 1: Understand elements of set theory for

CO 2: Explain sequence and series, power series and radius of convergence.

CO 3: Understand maxima and minima of function and multiple integrals.

CO 4: Define reimann Stieltjes integral, improper integrals and mean value theorem

CO 5: Solve Rank and inverse of a matrix for extensive use across various fields.

UNIT-I

Recap of elements of set theory; Introduction to real numbers, Introduction to n-dimensional Euclidian space; open and closed intervals (rectangles), compact sets, Bolzano - Weirstrass theorem, Heine - Borel theorem.

UNIT-II

Sequences and series and their convergence, Real valued function, Properties of real valued continuous function on \mathbb{R}^n , Uniform continuity, Sequences and series of functions, Uniform convergence, Power series and radius of convergence.

UNIT-III

Fields, vector spaces, subspaces, linear dependence and independence, basis and dimension of a vector space, finite dimensional vector spaces, completion theorem, examples of vector spaces over real and complex fields, linear equations, Determinants.

UNIT-IV

Vector spaces with an inner product, Gram-Schmidt orthogonalization process, orthonormal basis and orthogonal projection of a vector. Kronecker product. Linear transformations, algebra of matrices, row and column spaces of a matrix.

UNIT-V

Elementary matrices, rank and inverse of a matrix, null space and nullity, partitioned matrices, Hermit canonical form, generalized inverse, Moore-Penrose generalized inverse,

Vanley

Idempotent matrices, Solutions of matrix equations. Real quadratic forms, reduction and classification of quadratic forms.

REFERENCES

- 1. Apostol, T.M. (1985). Mathematical Analysis, Narosa, Indian Ed.
- 2. Courant, R. and John, F. (1965). Introduction to Calculus and Analysis, Wiley.
- 3. Rudin, Walter (1976). Principles of Mathematical Analysis, McGraw Hill.
- 4. Shanti Narayan: A course of mathematical analysis. S. Chand & Co. Ltd.
- 5. Graybill, F.A.(1983). Matrices with applications in statistics, 2nd Ed. Wadsworth.
- 6. Rao, C.R.(1973). Linear statistical inference and its applications, 2nd ed. John Wiley and Sons, Inc.
- 7. Searle, S.R. (1982). Matrix Algebra useful for Statistics. John Wiley and Sons. Inc.
- 8. Shanti Narayan: Matrices
- 9. Vashishtha, A. R.: Matrices

Paper -II STATISTICAL METHODS

Course Objective: This course is useful for the students to conversant with various techniques used in summarization and analysis of data. The focus will be both on theoretical as well as practical aspects. This is highly useful in research methodology and case study. The course is job oriented.

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Understand the measure of locations and variation for data analysis.
- CO 2: Perform testing of hypothesis and related test for decision making.
- CO 3: Use probability mass function and standard discrete distributions for statistical distribution.
- CO4: Explain standard continuous distributions and order-statistics for outlier detection.
- CO 5: Apply Type I and II errors for testing of hypothesis.

UNIT-I

Diagrammatic and representation of data, Frequency distribution, measures of location, dispersion, Skewness, Kurtosis, Moments and Cumulant, Moment generating function. Cumulant generating function.

UNIT-II

Simple correlation coefficient, Multiple and Partial Correlation. Linear and Multiple Regression, and their application, Intra class correlation, Correlation ratio.

Definition of probability, Additive and multiplicative theorems of probability, Bayes' theorem, Basic distribution function probability mass function, probability density function, joint, marginal and conditional p.m.f.. Random Variables and its mathematical expectations, conditional Expectation, Expectation of sum and multiplication of random variables.

17 - Lee

UNIT-III

Standard Discrete Distributions- Bernoulli, Binomial, Poisson, Geometric, Hyper geometric and Multinomial distribution. Limiting form of Binomial and Poisson distributions.

UNIT-IV

Standard continuous distributions-Uniform, Exponential, Normal Beta, Gamma and Cauchy distributions. Order Statistics-their distributions and properties. Joint & Marginal distributions of Order-Statistics.

UNIT-V

Statistical hypotheses, Type I and II errors, level of significance, test of significance, concept of p-value. Tests of significance for the parameters of normal distribution (one sample and two sample problems) and the relevant confidence intervals. Chi-square test of goodness of fit and independence of attributes. Test of significance for correlation coefficient (ρ =0, ρ = ρ ₀).

REFERENCES

- 1. Dudewicz, E.J. and Mishra, S.N.(1988): Modern Mathematical Statistics, Wiley, Int'IStudent's Edition.
- 2. Rohatgi, V.K. (1984) : An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.
- 3. Rao, C.R. (1973) : Linear Statistical Inference and its Applications, 2/e, Wiley Eastern.
- 4. Weather Burn, C.E. : A first Course in Mathematical Statistics.
- 5. Keany, J.F. and Keeping, E.S.: Mathematics of Statistics Pt. I and II6. Kendall, M.G. and stuart A: Advanced Theory of Statistics.
- 7. Mood ,gybrill and Boes : Introduction to theory of Statistics
 8. Hogs and Craig : Mathematical Statistics
- 8. Hogs and Craig : Mathematical Statistics
 9. Goon, gupta and Dasgupta : Fundamental of Mathematical Statistics Vol.I.

Paper –III

Course Objective: This course will lay the foundation to probability theory and statistical modelling of Outcomes of real life random experiments.

PROBABILITY AND MEASURES

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Recall concepts of random experiments for understanding the likelihood events
- **CO 2:** Understand foundation of random variables for modelling and analysing uncertain Outcomes.
- CO 3: Proof the Dominated convergence theorem to justify interchanging limits
- CO 4: Explain weak law and strong law of large numbers and related applications.
- CO 5: Solve problems based on CLT for inferences about population.

UNIT-I

Random experiment, Axiomatic definition of probability, Classes of sets, fields, sigma-fields, minimal sigma-field, Borel sigma-field in R_k, sequence of sets, limsup and liminf of a sequence of sets. Measure, Probability measure, properties of a measure.

Tales

UNIT-II

Lebesgue and Lebesgue- Steljes measure on R_k, Measurable set, Measurable functions, Random variables, sequence of random variables, almost sure convergence, convergence in probability (and in measure).

UNIT-III

Convergence in rth mean Integration of a measurable function with respect to a measure Convergence in distribution, Convergence in R Monotone convergence theorem, Fatou's lemma, Dominated convergence theorem, Borel-Cantelli Lemma, Independence,.

UNIT-IV

Weak law and strong law of large numbers for iid sequences, Definition and examples of Markov dependence, Chebychev's Inequality, Probability generating function with examples. Markov, Holder-Jenson and Liapunov inequality.

UNIT -V

Characteristic function and its properties uniqueness theorem, Levy's continuity theorem (statement only), CLT for a sequence of independent random variables under Lindeberg's condition, CLT for iid random variables. Problems based on CLT.

REFERENCES

- 1. Ash, Robert.(1972): Real Analysis and Probability. Academic Press.
- 2. Billingsley, P.(1986): Probability and Measure. Wiley.
- 3. Dudley, R. M. (1989): Real Analysis and Probability, Wadsworth and Brooks/Cole.
- 4. Kingman, J F C and Taylor, S.J. (1966). Introduction to Measure and Probability. Cambridge University Press.
- 5. B.R. Bhat: Probability Theory.

Paper -IV APPLIED STATISTICS

Course Objective: This course is highly practical and useful in daily life for the study of hike in prices and population growth. Employers use these techniques for the payment of salaries of their employees.

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Understand the sources of demographic data and to construct life tables.
- CO 2: Explain laws of mortality, measures of fertility and population growth.
- CO 3: Understand components of time series and related analysis on real data.
- CO 4: Construct index number and to understand demand analysis.
- CO 5: Analyse periodogram and correlologram analysis, demand and supply curve.

UNIT-I

Sources of demographic data -census, register, adhoc survey, hospital records, measurement of mortality ,crude death rate, age specific death rates, standardized death rate infant mortality rates, Complete and abridged life table-Kings method, Greville's method and method of Reed and Merrel, Construction of life table.

UNIT-II

Laws of mortality-Fitting of Makeham's law, Measurement of fertility-crude birth rate, general fertility rate, age-specific birth rate, total fertility rate, gross and net reproduction rate. The Stable and Stationary populations, Logistic curve for population growth, Population Projection.

Janses

UNIT -III

Different Component of time series, Measurement of secular trend: Fitting of mathematical curves, method of moving average, variate difference method, effect of elimination of trend, merits and demerits of different methods of trend estimation, seasonal components, Determination of cyclical components.

UNIT-IV

Index number :meaning and construction of index number, Laspeyres, Paasche's, Edgeworth and Marshal and Fisher's ideal index numbers, tests of consistency of index number formulae, Time and Factor reversal tests, Chain base index numbers, Cost of living index numbers, Whole sale price index numbers.

UNIT-V

Periodogram analysis, Yule-Slutsky effect, Correlogram Analysis, Demand Analysis: Demand and supply curves, Price elasticity of demand and supply, determination of demand curves from market data, Engel' Law and Engle's Curve.

REFERENCES

- 1. O. S. Srivastava (1983) A text book of demography ,Vikas Publishing House.
- 2. Parimal Mukhopadhaya (1999) Applied Statistics, Books and Allied (P) Ltd.
- 3. V. K. Kapoor and S. C. Gupta: Applied Statistics, Sultan Chand and Sons.

Paper V: Lab Course I - Practical Based on Paper I & II

Paper VI: Lab Course II - Practical Based on Paper III & IV

Jakey

SECOND SEMESTER

Paper – I : Biostatistics

Paper - II : Statistical Computing
Paper - III : Stochastic Processes
Paper - IV : Sampling Theory

Paper-V: Lab Course - I: Practical based on Papers I and II
Paper-VI: Lab Course -II: Practical based on Papers III &IV

Paper-VII : Choice Based Credit System (Minor Elective from other Subject)

Paper -I

BIOSTATISTICS

Learning Outcome: The course is useful for the study of various statistical tools and techniques in Biological data related to medical statistics. Effectively apply these tools on solving the biological problems occurring in real life.

Course Outcome: On successful completion of the course, the student will be able to:

CO 1: Understand Introduction to Biostatistics

CO 2: Explain Multiple Regression and Logistic Regression for forecasting of data.

CO 3: Use Deviance statistics and Wald test in medical science

CO 4: Compare Types of Cox Regression Models

CO 5: Perform the non-parametric tests for analysis of data.

UNIT-I

Clinical Trials, Introduction to Biostatistics, Ethics -, Measures of disease frequency and disease burden. Clinical Trials - Goals of Clinical Trials, Phases of Clinical Trials, Classification of Clinical Trials - Randomization: Fixed Allocation, Simple, Blocked, Stratified, Baseline Adaptive and Response Adaptive - Blinding: Single, Double and Triple.

UNIT-II

Multiple Regression and Logistic Regression, Multiple Regression— Assumptions, uses, Estimation and interpretation of coefficients, Testing the regression coefficients, Coefficient of determination, Testing model adequacy. Logistic regression: Introduction, Logistic regression model.

UNIT-III

relative risk – logic, Odds ratio – properties of odds ratio, the relationship between the odds ratio and relative risk, Maximum Likelihood estimates and interpretation of coefficients, Test for coefficients, Test of overall regression and goodness of fit using Maximum Likelihood technique, Deviance statistics, Wald test, LR test and score test.

UNIT-IV

Types of Cox Regression Models- graphical approach, log-log plots, Observed versus expected plots, time-dependent covariates ,Stratified Cox Procedure- hazard function, Extension of the Cox PH model - hazard ratio formula, extended Cox likelihood - An overview of Proportional odds model.

Vanley

UNIT - V

Use of Level of significance, degree of freedom, p value in terms of Biostatistics. Assumptions and applications of non-parametric tests-Chi-square test, Sign test, Run test, Median test, Wilcoxon-Rank Sum test, Mann Whitney U test, Kruskal Walis Test.

REFERENCES

- 1. Chow, S. C., and Liu, J. P. (2004). Design and Analysis of Clinical Trials: Concepts and Methodologies, Second Edition, Wiley Interscience, John Wiley & Sons, NJ.
- 2. Friedman, I. M., Furberg, C. D., and DeMets, D. L. (2010), Fundamentals of Clinical Trials, Fourth edition, Springer Verlag, NY.
- 3. Van Belle, G., Fisher, L. D., Heagerty, P. J., and Lumley, T. (2004). Bio-Statistics A Methodology for the Health Science, Second Edition, Wiley, NY.
- 4. Daniel, W. W. and Chad L. Cross(2018). Bio-Statistics: A foundation for analysis in the Health Sciences, Eleventh Edition, John Wiley & Sons, NY.
- 5. Kleinbaum, D. G., and Klein, M. (2012): Logistic regression: A Self-Learning Text, Third Edition, Springer Verlag, NY.
- 6. Kleinbaum, D. G., and Klein, M. (2012): Survival Analysis: A Self-Learning Text, Third Edition, Springer Verlag, NY.

Paper – II

STATISTICAL COMPUTING

Course Objective: This is job oriented course and is useful in the computation of statistical constants.

Course Outcome: On successful completion of the course, the student will be able to:

- **CO 1:** Demonstrate finite differences and interpolation.
- CO 2: Define solutions using various numerical differentiation and integration rule.
- CO 3: Understand the statistical analysis in R programming...
- CO 4: Use SPSS and excel for data analysis.
- CO 5: solve multivariate data representation using R

UNIT -I

Numerical Analysis: Finite differences & interpolation, Interpolation with unequal intervals, Central differences Interpolation-Gauss's, Stirling's and Bessel's Formulae.

UNIT -II

Numerical differentiation and integration, Trapezoidal rule, Simpson's one third, 3/8 rule, Weddle's rule, Euler-Maclaurin Summation Formula, Newton-Cotes Formula, Gauss formula for approximation to factorials, Difference equation of first and second order.

Jaley

UNIT -III

Overview of R, R data types and objects (vector, matrix, data frame, list, array, factor, time series), reading and writing data (both from console and external files) and different types of indexes in R.

UNIT -IV

Calling external programs in R and linking to data bases. Data visualization using R (both two and three dimensions). Statistical Computing and mathematical computing based on descriptive statistics using R.

UNIT-V

multivariate data representation, simple hypothesis test, analysis of variance, numerical integration, root extraction, matrix computations using R.

REFERENCES

- 1. W.H. Press, S.A. Teukolsky, W.T. Vellering, and B.P. Flannery (1993). Numerical Recipes in C, Second Edition. Cambridge University Press.
- 2. R.A. Thisted (1988). Elements of Statistical Computing. Champman and Hall.
- 3. Rajaraman, V.: Computer Oriented Numerical Methods.
- 4. Grewal, B. S.: Numerical methods.
- 5. Saxena, H. C.: Finite differences.
- 6. Sandeep Rakshit(2017): R Programming for beginners, Mc Graw Hill Publication.
- 7. Michael J. Crawley (2017): The R Book, Willey Publication.
- 8. John Chambers, Software for data analysis: Programming with R, Springer, 2008.
- 9. Phil Spector, Data manipulation with R, Springer, 2008.

Paper - III

STOCHASTIC PROCESSES

Course Objective: This course reveals probabilistic approach of various phenomenon like random events happening in the world.

Course Outcome: On successful completion of the course, the student will be able to:

- **CO 1:** Explain stochastic process and Markov chain.
- CO 2: Understand Gambler ruin problem and renewal theory.
- CO 3: Explain discrete state space continuous time and Markov chains
- CO 4: Apply Poisson process and its applications.
- CO 5: Define Branching Process and time series.

UNIT -I

Introduction to stochastic processes (sp's).; classification of sp's according to state space and time domain. Countable state Markov chains (MC's), Chapman-Kolmogorov equations; calculation of n-step transition probability and its limit. Stationary distribution, Classification of states; transient MC;

UNIT -II

Probability generating function, Properties of probability generating function .Laplace transform & its properties, Random walk and Gambler's ruin problem; with applications, Renewal theory: Elementary renewal theorem and applications.

Jamery

UNIT -III

Statement and uses of key renewal theorem; study of residual life time process. Martingle in discrete time, inequality, convergence and Stopping Theorem, Discrete state space continuous time MC; Kolmogorov differential equations,

UNIT -IV

Poisson process, birth and death process; Applications to queues and storage problems. Wiener process as a limit of random walk; first - passage time and other problems. Stationary process: weakly stationary and strongly stationary processes.

UNIT- V

Moving average and auto regressive processes. Branching process: Galton-Watson branching process, probability of ultimate extinction, distribution of population size. Statistical inference in MC and Markov processes.

REFERENCES

- Adke, S.R. and Manjunath, S.M. (1984): An Introduction to Finite Markov Processes, Wiley Eastern.
- 2. Bhat, B.R. (2000): Stochastic Models: Analysis and Applications, New Age International, India
- 3. Cinlar, E. (1975): Introduction to Stochastic Processes, Prentice Hall.
- 4. Feller, W. (1968): Introduction to Probability and its Applications, Vol. 1, Wiley Eastern.
- 5. Harris, T.E. (1963): The Theory of Branching Processes, Springur-Verlag.
- 6. Hoel, P.G., Port, S.C. and Stone, C.J. (1972): Introduction to Stochastic Processes, Houghton
 Miffin& Co.
- 7. Jagers, P. (1974): Branching Processes with Biological Applications, Wiley.
- 8. Karlin, S. and Taylor, H. M. (1975): A first Course in Stochastic Processes, Vol.1, Academic Press.
- 9. Medhi, J. (1982): Stochastic Processes, Wiley Eastern10. Parzen, E.(1962): Stochastic Processes, Holden-Day.

Paper - IV

SAMPLING THEORY

Course Objective: This course is practical and useful in competitive examinations. It gives the techniques to understand the trend of whole population on the basis of sample **Course Outcome:** On successful completion of the course, the student will be able to:

- CO 1: Understand about sample survey and sampling techniques.
- CO 2: Apply various sampling methods and allocations of sample sizes to different strata.
- **CO 3:** Explain ratio and regression estimator, and comparisons with SRS and Stratified sampling.
- CO 4: Understand unequal Probability sampling and different estimator
- **CO 5:** Analysis cluster sampling for field survey and comparison of efficiency with other techniques.

UNIT-I

Sample Surveys: concept of population sample and properties of estimator for finite populations, need for sampling, census and sample survey, sample selection and sample

There

size, Basic finite population sampling techniques, simple random sampling with and without replacement.

UNIT-II

Stratified sampling, systematic sampling and related results on estimation of population mean/total. Allocation problem in stratified sampling. Optimum allocation, Neyman allocation and Proportional allocation, Estimation of gain in precision due to stratification, Post Stratification, Construction of strata, Effect of increasing number of strata. Systematic sampling. Comparison of stratified, systematic and simple random sampling. Systematic sampling under a linear model.

UNIT-III

Ratio regression estimators based on srswor and stratified methods of sampling. Bias of ratio estimate and optimum property of ratio estimate, Regression estimate with pre-assigned and with estimated regression coefficient, product method of estimation, comparison of ratio, regression and product estimate with sample mean.

UNIT-IV

Unequal probability sampling: ppswr/wor methods [including Lahiri's scheme] and related estimators of a finite population mean [Desraj estimator and Murthy's estimator], Hurwitz-Thompson estimator. Estimation of population proportion, Non-sampling errors, estimation of population mean in presence of non-response,

UNIT - V

Cluster sampling. One stage cluster sampling, variance and cost functions, sampling with probability proportional to cluster size, two stage cluster sampling, Allocation of sample to two stages :equal first stage unit comparison of two stage with one stage sampling.

REFERENCES

- 1. Cochran, W.G.: Sampling Techniques [3rd Edition, 1977). Wiley
- 2. Des Raj and Chandak (1998): Sampling Theory. Narosa
- 3. Murthy, M.N. (1977). Sampling Theory & Methods. Statistical Publishing Society, Calcutta.
- 4. Sukhatme et al (1992). Sampling Theory of Surveys with Applications. lowa State University Press & IARS.
- 5. Singh, D. and Chaudhary, F.S. (1986). Theory and Analysis of Sample Survey Designs. New Age International Publishers.

Paper V:Lab Course I - Practical Based on Paper I and II

Paper VI: Lab Course II - Practical Based on Paper III and IV

Paper VII: Choice Based Credit System (Minor Elective from other Subject)

Internship (Total 60 hours during summer vacation)

There

THIRD SEMESTER

Paper - I : Inference -I

Paper - II : Linear Models and Design of Experiments

Paper - III : Elective -I (Select any one)

(a) Basic Operations Research

(b) Demography

Paper-IV: Elective -II (Select any one)

(a) Statistical Quality Control

(b) Survival Analysis

Paper-V : Lab Course - I Practical based on Papers I and II
Paper-VI : Lab Course - II Practical based on Papers III and IV

Paper-VII : Choice Based Credit System (Minor Elective from other Subject)

Paper - I INFERENCE- I

Course Objective: The objective of the course is to provide a systematic account of drawing conclusions about a population which can be infinite in size. It gives various methods of estimating parameters of a population.

Course Outcome: On successful completion of the course, the student will be able to:

CO 1: Learn properties of an estimator like unbiasedness, consistency, efficiency and Sufficiency.

CO 2: Explain various methods of estimation

CO 3: Apply the testing of hypothesis for data analysis.

CO 4: Explain concept of interval estimation.

CO 4: Use decision theory concepts

UNIT-I

Theory of Point estimation, properties of a good estimator, Unbiasedness, Consistency, efficiency and sufficiency, Cramer -Rao inequality and its extension, Bhattacharya bounds, Fisher -Neyman factorization theorem. Completeness, Rao-Blackwell theorem and Lehmann Scheffe theorem.

UNIT-II

UMVUE, Concept of Minimal sufficient statistics, Likelihood function, examples from standard discrete and continuous distributions. such as Bernoulli, Binomial, Poisson, normal, exponential gamma etc) Methods of estimation – Method of maximum likelihood estimators, properties of maximum likelihood estimators.

UNIT - III

Method of scoring, method of moments, method of minimum chi-square, method of minimum variance, B.A.N. estimators. CAN estimators, invariant estimator. Concepts of

Tusey

critical regions, Test functions, two kinds of errors. Size function, power function, level of significance.

UNIT-IV

M. P. and UM.P Test, Neymann Pearson Lemma, M.P. test for simple null against simple alternative hypothesis, randomized and non-randomised tests, Confidence interval and confidence coefficients, Theory of confidence set, Relationship with the theory of hypothesis testing, Confidence interval for large samples.

UNIT - V

Loss function, Risk function, Admissibility, Minimax rule, Bays rule, Structure of Bayes rule, Construction of a Minimax rule, prior and posterior distributions, important class of priors such as non-informative and conjugate priors, point and interval estimation as decision problem.

REFERENCES:

- 1. Kendall M.G. and Stuart A.(1972): Advanced Theory of Statistics, Vol. 2, Charles Griffin and Co., New York.
- 2. Rohatgi V.K. (1988): An Introduction to Probability and Mathematical Statistics. Wiley Eastern Ltd. New.Delhi (Student Edition)
- 3. Lehmann, E.L.(1986): Testing Statistical hypotheses (Student Edition).
- 5. Rao, C. R. (1973): Linear Statistical Inference.
- 6. Zacks, S. (1971): Theory of Statistical Inference, John Wiley and Sons, New York.
- 7. Dudewicz, E.J. and Mishra, S.N. (1988). Modern Mathematical Statistics. Wiley Series in Prob. Math. Stat., John Wiley and Sons, New York (International Student Edition)
- 8. Ferguson, T.S. (1996). A course on Large Sample Theory. Chapman and Hall, London.

Paper – II LINEAR MODELS AND DESIGN OF EXPERIMENTS

Learning Outcome: This course is useful for comparing various methods of tool / technique used in a particular situation of comparison. It is highly useful in Agriculture and Pharmaceutical Industries

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Explain Multivariate normal distributions, Gauss-Markov Theorem.
- CO 2: Understand various concepts of Design of experiments and principals of DOE.
- CO 3: Apply various use of design of experiments.
- CO 4: understand factorial effects and factorial experiments with different aspects.
- CO 5: Apply block design for potential source of variation.

Jamber

UNIT -I

Gauss- Markov set-up, Estimability condition, best point estimates/interval estimates of estimable linear parametric functions, Normal equations and Least squares estimates, Gauss-Markov Theorem, Introduction to fixed, mixed and random effects linear models. Analysis of variance for one way and two way classified data with equal and unequal number of observations per cells,

UNIT-II

Introduction to design of experiments, Principle of design of experiments, completely randomized design, Randomized block design, Latin square design. Missing plot technique - general theory and applications, efficiency of a design.

UNIT -III

Graeco Latin Square design, Cross-over designs, Analysis of covariance: Applications to standard designs with one concomitant variable, Split plot and split block experiments, efficiency of whole plot and sub plot treatments, merits and demerits of split plot experiments.

UNIT-IV

General factorial experiments, factorial effects; best estimates and testing the significance of factorial effects; study of 2 and 3 factorial experiments in randomized blocks; Complete and partial confounding. Fractional replication for symmetric factorials, 2^n experiment with 2^k blocks per replicate, 3^2 experiment.

UNIT - V

General block design and its information matrix. criteria for connectedness, balance and orthogonality, BIBD- Analysis with intrablock information and recovery of interlock information.

PBIBD, Youden design - intrablock analysis. Application areas: Response surface experiments; first order designs and orthogonal designs.

REFERENCES

- 1. Aloke Dey (1986): Theory of Block Designs, Wiley Eastern.
- 2. Angela Dean and Daniel Voss (1999): Design and Analysis of Experiments, Springer.
- 3. Das, M.N. and Giri, N.(1979): Design and Analysis of Experiments, Wiley Eastern
- 4. Giri, N. (1986): Analysis of Variance, South Asian Publishers
- 5. John, P.W.M. (1971): Statistical Design and Analysis of Experiments, Macmillan.
- 6. Joshi, D.D. (1987): Linear Estimation and Design of Experiments, Wiley eastern.
- 7. Montgromery, D. C. (1976): Design and Analysis of Experiments, Wiley, New York.
- 8. Pearce, S.C. (1984): Design of Experiments, Wiley, New York.

Elective - I (Select any one)

Paper - III (a) BASIC OPERATIONS RESEARCH

Learning Outcome: Operations Research deals with the application of scientific methods and techniques to decision-making problems. A decision-making problem occurs where there are two or more alternative courses of action, each of which leads to a different and sometimes unknown end result. Operations research is also used to maximize the utility of limited resources. The objective is to select the best alternative, that is, the one leading to

Jansey

the best result. It has applications in the management and administration of military, government, commercial, and industrial systems. It also helps in resource allocation and replacement, inventory control and scheduling of large-scale construction projects.

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Discuss Basic background of operations research and model formulations.
- **CO 2:** Solve transportation and assignment problem for optimum allocation of resources.
- CO 3: Use inventory model for industry.
- CO 4: Explain the queuing theory concepts and its applications.
- CO 5: Solve game theory problems for strategic decision making.

UNIT-I

Definition and scope of Operational research; phases in Operations Research; models and their solutions; decision-making under uncertainty and risk, use of different criteria; The structure and formation of a linear programming problem, Graphical and simplex procedure, Two phase methods, and charne's-M method with artificial variables; duality theorem.

UNIT-II

Transportation and Assignment problems, Routing and traveling salesman problem.

UNIT-III

Inventory problems – Deterministic models of inventory, Economic Lot size formula, instantaneous production case, finite production rates situation, cases when shortages are allowed /not allowed. Stochastic inventory models – a single period model with no set up cost.

UNIT-IV

Basic characteristics of queuing systems, Steady-state solutions of M/M/1 and M/M/c models with associated distributions of queue-length and waiting time. M/G/1 queue and PollazcekKhinchine result. Steady-state solutions of M/Ek/1 and $E_k/M/1$ queues, Machine interference problem. Transient solution of M/M/1 queue.

UNIT-V

Decision-making in the face of competition, two-person games, pure and mixed strategies, existence of solution and uniqueness of value in zero-sum games, finding solutions in 2x2, 2xm and mxn games. Non-zero sum games, co-operative and competitive games, equilibrium solutions and their existence in bi-matrix games. Nash equilibrium solution.;

REFERENCES

- 1. Taha H.A. (1982) Operational Research: An Introduction; Macmillan.
- 2. Hillier F.S. and Leiberman G.J. (1962) Introduction to Operations Research; Holden Day.
- 3. Kanti Swarup, Gupta, P.K. and Singh M.M. (1985) Operations Research; Sultan Chand& Sons.

Jansey

- 4. Philips D.T., Ravindran A. and Solberg J. Operations Research, Principles and Practice.
- 5. Churchman C.W., Ackoff R.L. and Arnoff E.L.(1957) Introduction to Operations Research; John Wiley.
- 6. Kleinrock L. (1975) Queueing Systems, vol. 1, Theory; John Wiley
- 7. Saaty T. L. (1961) Elements of Queueing Theory with Applications; McGraw Hill
- 10. Hadley G.and Whiting T.M. (1963) Analysis of Inventory Systems; Prentice Hall
- 11. Starr M.K. and Miller D.W. (1962) Inventory Control-Theory and Practice; Prentice
- 12 .Mckinsey J.C.C. (1952) Introduction to the Theory of Games; McGraw Hill
- 13. Wagner H.M. (1973) Principles of O.R. with Applications to Managerial Decisions; Prentice Hall
- 14. Gross, D. and Harris, C. M. (1974): Fundamentals of Queueing Theory; John Wiley

Paper - III (b) DEMOGRAPHY (Major Elective)

Learning Outcome: The course is useful in understanding of demographic phenomenon of a particular geographical area encountering the events like fertility, mortality, marriage, migration and social mobility. Government employees like Indian statistical service and non government organisions use these techniques. It is a job oriented course.

Course Outcome: On successful completion of the course, the student will be able to:

- **CO 1:** Understand errors in demographic data and for checking completeness of registration data.
- CO 2: understand and analyse fertility trends.
- CO 3: Explain population transition theory and measure of mortality.
- CO 4: Understand Stable population and quasi-stable populations.
- **CO 5:** Predict movement of people and other resources between locations.

UNIT - I

Coverage and content errors in demographic data, Chandrasekharan-Deming formula to check completeness of registration data, adjustment of age data-use of Whipple, Myer and UN indices.

UNIT - II

Population transition theory Measures of fertility; Stochastic models for reproduction, distributions of time of birth, inter-live birth intervals and of number of births (for both homogeneous and homogeneous group of women).

UNIT - III

Estimation of parameters; estimation of parity progression from open birth interval data. Measures of Mortality; construction of abridged life tables, infant mortality rate and its adjustments, model life table.

Janes

UNIT - IV

Stable and quasi-stable populations, intrinsic growth rate. Models of population growth and their filling to population data.

UNIT - V

Internal migration and its measurement, migration models, concept of international migration. Methods for population projection, component method of population projection, Nuptiality and its measurements.

REFERNCES:

- 1. Kumar, R.(1986): Technical Demography, Wiley Eastern Lts.
- 2. Benjamin, B.(1969): Demographic Analysis, George, Allen and Unwin.
- 3. Chiang, C.L.(1968): Introduction to Stochastic Progression.
- 4. Cox, P.R. (1970): Demography, Cambridge University Press.
- 5. Keyfitz, N. (1977): Introduction to the Mathematics of Population-with Revision, Addison-Wesley, London.
- 6. Spiegelman, M.(1969): Introduction to Demographic Analysis, Harvard University Press.
- 7. Wolfenden, H.H.(1954): Population Statistics and Their Compilation, Am Actuarial Society

Elective - II (Select any one)

PAPER - IV (a) STATISTICAL QUALITY CONTROL

Learning Outcome: The paper shows the applications of Statistics to maintain quality in Engineering or industrial set up. The theory of control charts, sampling plans and process capability indices is the basis for judging whether the process is in statistical control or not. The topics are quite helpful during industrial training/placements of M.Sc. Students.

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Discuss Basic background of Statistical Quality Control and charts.
- CO 2: Solve the capability indices, control charts and their interpretation.
- CO 3: Understand about Acceptance sampling plans for attribute inspection.
- CO 4: Explain Acceptance sampling plans for variables inspection
- CO 5: Draw the curve OC curve and find ASN

UNIT-I

Definition of quality and its dimensions, evolution of quality control, chance and assignable causes of variation, statistical process control (SPC), statistical basis of control charts, criteria to evaluate control charts' performance, classical (Shewhart-type) control chart for variables (mean, range and standard deviation charts) and attributes (p, np, u and c charts).

UNIT-II

Control charts with memory – CUSUM chart, Moving sum/ Moving average chart, EWMA chart, Control chart for high-yield processes- exponential chart, gamma chart.

Studes

UNIT-III

Softwares for SPC, Sequential sampling plan. Tolerance limits and Specification limits. Process capability Analysis, process capability and machine capability indices Cp_{pk} and Cp_{pm} ,

UNIT -IV

Estimation and test of hypothesis relating to indices for normally distributed characteristics. Single, Double, Multiple sampling plans, Baysian sampling plan.

UNIT-V

Introduction to acceptance sampling. Rejection and Rectification types. consumer's risk, producer's risk. Operating characteristic curve, average sample number (ASN) curve, AQL, AOQL, ATI, LTPD.

REFERENCES

- 1. Montgomery, D.C. (1985) Introduction to Statistical Quality Control; Wiley.
- 2. Ott, E.R. (1975) Process Quality Control; McGraw Hill.
- 3. Wetherill, G.B. (1977) Sampling Inspection and Quality Control; Halsted Press.
- 4. Wetherill, G.B. and Brown, D.W. (1991) Statistical Process Control, Theory and Practice; Chapman and Hall.
- 5. Duncan, A. J.(1986): Quality Control and Industrial Statistics. 5th ed., Richard D. Ervin, Homewood. Illiions.
- 6. Ekambaram, S.K. (1963): The Statistical basis of quality control charts. Asia Publishing House, London.
- 7. Grant, E.L. & Leavenworth, R.S. (1988): Statistical Quality Control. 6th ed., McGraw-Hill Book Co., New York.
- 8. Bowker, A.H. & Goode, H.P. (1952): Sampling inspection by variables. McGraw-Hill Book Co., New York.
- 9. Schilling, E.G. (1982): Acceptance sampling in quality control. Marcel Dekker, Inc., New York

Paper IV (b) Survival Analysis

Course Objective: Students will acquire statistical analysis used in survival data, and knowledge about behavior of biological data,

Course Outcome: On successful completion of the course, the student will be able to:

CO1: statistical analysis used in survival data,

CO2 : knowledge about behaviour of biological data.

CO3 : Explain Competing Risk Theory for industry

CO4: Use Stochastic Epidemic Models for data analysis
CO5: Apply Coupling and Repulsion to analyses the data

UNIT I

Survival Analysis: Functions of survival times, survival distributions and their applications-exponential, gamma, Weibull, Rayleigh, lognormal, death density

17 Mey

function for a distribution having bath-tub shaped hazard function.

UNIT II

Censoring Schemes: Type I, Type II and progressive or random censoring with biological examples. Estimation of mean survival time and variance of the estimator for Type I and Type II censored data with numerical examples. Non-parametric methods: Actuarial and Kaplan-Meier methods for estimating survival function and variance of the Estimator.

UNIT III

Competing Risk Theory: Indices for measurement of probability of death under competing risks and their inter-relations. Estimation of probabilities of death using maximum likelihood principle and modified minimum Chi-square methods. Theory of independent and dependent risks. Bivariate normal dependent risk model.

UNIT IV

Stochastic Epidemic Models: Simple epidemic models, general epidemic model definition and concept(without derivation). Duration of an epidemic. Statistical Genetics: Introduction, concepts-Genotype, Phenotype, Dominance, Recessiveness, Linkage and Recombination.

UNIT V

Coupling and Repulsion. Mendelian laws of Heredity, Random mating, Gametic Array relation between genotypic array and gametic array under randommating. Distribution of genotype sunder randommating. Clinical Trials: Planning and design of clinical trials, Phase I, II and III trials. SingleBlinding.

SUGGESTEDREADING:

- 1. Lee, E.T. and Wang, J.W. (2003): Statistical Methods for Survival data Analysis, 3rd Edition, John Wiley and Sons.
- 2. Biswas, S. (2007): Applied Stochastic Processes: A Biostatistical and Population Oriented Approach, Reprinted 2^{nd} Central Edition, New Central Book Agency.
- 3. Kleinbaum, D.G. (1996): Survival Analysis, Springer. Chiang, C.L. (1968): Introduction to Stochastic Processes in Bio Statistics, John Wileyand Sons.

Indrayan, A. (2008): Medical Biostatistics, 2nd Edition Chapman and Hall/CRC.

Paper V : Lab Course I - Practical Based on Papers I and II

Paper VI: Lab Course II – Practical Based on Papers III and IV
Paper- VII: Choice Based Credit System (Minor Elective from other Subject)

They

FOURTH SEMESTER

Paper -I : Inference -II

Paper - I : Multivariate Analysis

Paper - III : Elective –III (Select any one)

(a) Advance Operations Research

(b) Econometrics

Paper - IV : Elective -IV (Select any one)

(a) Reliability Theory(b) Actuarial Statistics

Paper-V : Lab Course - I

Practical based on Papers I, II and III

Papers-VI : Lab Course-II

Project Work

Paper-I INFERENCE II

Course Objective: This course deals with inference of testing of hypothesis problems. Various methods of testing of hypothesis and calculation of size and power of the test will be discussed under this course.

Course Outcome: On successful completion of the course, the student will be able to:

CO 1: Understand critical region, unbiased test and power function.

CO 2: Solve similar region and likelihood ratio test.

CO 3: Explain the OC and ASN function.

CO 4: Analyse the problems of Sequential analysis

CO 5: Solve the problems of non-parametric tests

UNIT -I

Concept of Test of Hypothesis and related errors: Generalized form of Neyman Pearson lemma, UMP test for simple null hypothesis against one sided alternatives in one parameter exponential family . Unbiased test, uniformly most powerful unbiased test, Type "A" and type A_1 critical regions or locally most powerful unbiased test.

UNIT-II

Composite Hypothesis and similar regions, similar regions and complete sufficient statistics, Construction of most powerful similar regions, Unbiased critical regions, optimum regions and Sufficient Statistics.

Jaleur

UNIT-III

Likelihood ratio test, properties of likelihood ratio test, Likelihood ratio test for the mean of normal population, LR test for equality of means and variances of two and several normal populations.

UNIT-IV

Sequential analysis: Wald's sequential probability ratio test (SPRT) with prescribed errors of two types, OC and ASN function of SPRT.

UNIT -V

Non parametric test, Rank test, Wilcoxon test, Median test, Sign test, Mann-Whitney U test, Wald-Wolfowitz run test, Kolomogorov-Smirnov test, One and two sample problem, chi square test of goodness of fit.

REFERENCES

- 1. Kale, B.K. (1999): A first Course on Parametric Inference, Narosa Publishing House.
- 2. Rohatgi V. (1988): An Introduction to Probability and Mathematical Statistics. Wiley Eastern
 - Ltd. NewDelhi (Student Edition)
- 3. Lehmann, E.L.(1986)-(Latest): Theory of point Estimation (Student Edition).
- 4. Lehmann, E.L.(1986): Testing Statistical hypotheses (Student Edition).
- 5. Rao, C. R. (1973): Linear Statistical Inference.
- 6. Zacks, S. (1971): Theory of Statistical Inference, John Wiley and Sons, New York.
- 7. Gibbons, J.D. (1985): Nonparametric statistical inference 2ndEd., Marceldekker, Inc.
- 8. Dudewicz, E.J. and Mishra, S.N. (1988). Modern Mathematical Statistics. Wiley Series in Prob. Math. Stat., John Wiley and Sons, New York (International Student Edition)
- 9. Ferguson, T.S. (1996). A course on Large Sample Theory. Chapman and Hall, London.
- 10. Ferguson, T.S. (1967): Mathematical Statistics, Academic Press.

Paper – II MULTIVARIATE ANALYSIS

Course Objective: Techniques of Real analysis useful in various statistical courses are covered under this course. After learning this course, the student will be able to equip these techniques on any major statistical courses like Inference, Statistical computing, Multivariate analysis and Operations Research.

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Understand elements of set theory.
- CO 2: Explain sequence and series, power series and radius of convergence.
- CO 3: Understand maxima and minima of function and multiple integrals
- CO 4: Apply Characteristic function of Wishart distribution for data analyse
- **CO 5:** Define Reimann Stieltjes integral, improper integrals, mean value theorem and test for convergence

Juses

UNIT-I

Multivariate Normal Distribution and its properties, Reproductive property, transformation by a vector, singular /non-singular matrix, conditional distribution of a sub-set of multivariate normal variable/ Random sampling from a multivariate normal distribution.

UNIT-II

Maximum likelihood estimators of parameters. Distribution of sample mean vector. Null and non-null distribution of simple correlation coefficient. Null distribution of partial and multiple correlation coefficient. Distribution of sample regression coefficients.

UNIT - III

Distribution of Hotelling's T^2 statistic. Application in tests on mean vector for one and more multivariate normal populations and also on equality of the components of a mean vector in a multivariate normal population, Fisher-Behran statistic, Mahalanobis D^2 Statistic.

UNIT-IV

Distribution of sample generalized variance. Wishart matrix - its distribution and properties, Characteristic function of Wishart distribution, chi-square distribution as a particular case of Wishart distribution. Multivariate linear regression model-estimation of parameters, tests of linear hypotheses about regression coefficients.

UNIT-V

Classification and discrimination procedures for discrimination between two multivariate normal populations - sample discriminant function, probabilities of misclassification and their estimation, classification into more than two multivariate normal populations. Principal components, Dimension reduction, Canonical variables and canonical correlation - definition, use, estimation and computation. Introduction to Factor and Cluster Analysis.

REFERENCES

- Cook, R.D. and Weisberg, S. (1982). Residual and Influence in Regression. Chapman and Hall.
- 2. Draper, N.R. and Smith, H.(1998). Applied Regression Analysis. 3rd Ed. Wiley.
- 3. Gunst, R.F. and Mason, R.L.(1980). Regression Analysis and its Applications A Data Oriented Aproach. Marcel and Dekker.
- 4. Rao, C.R.(1973). Linear Statistical Inference and Its Applications. Wiley Eastern.
- 5. Weisberg, S. (1985). Applied Linear Regression. Wiley.
- 6. Andrson, T.W.(1983): An Introduction to multivariate statistical analysis. 2nd Ed. Wiley. Giri, N.C.(1977): Multivariate Statistical inference. Academic Press.
- 7. Kshirsagar, A.M. (1972): Multivariate Analysis. Marcel Dekker.
- 8. Morrison, D.F. (1976): Multivariate statistical methods. 2nd Ed. McGraw Hill.
- 9. Muirhead, R.J.(1982): Aspects of multivariate statistical theory, J. Wiley.
- 10. Seber, G.A. F.(1984): Multivariate observations. Wiley.
- 11. Sharma, S.(1996): Applied multivariate techniques. Wiley.
- 12. Srivastava, M.S. and Khatri, C.G. (1979).: An introduction to multivariate statistics. North Holland.
- 13. Johnson, R. and Wychern (1992): Applied multivariate Statistical analysis, Prentice Hall, 3rd Ed.

Elective -III (Select any one)

Paper –III (a) ADVANCE OPERATIONS RESEARCH

Course Objective: The course is useful in taking optimum decision related to industry.

CO1: understand Replacement problems for industry

CO2: Explain CPM and PERT for construction and other business problems.

CO3: USE Integer programming-Branch and Bound technique in Business

CO4: Draw the decision tree for real business problems

CO5: Simulate Monte Carlo method for industry

UNIT -I

Replacement problems: Replacement of items that fails and those that deteriorate, group and individual replacement policies

UNIT-II

Network analysis, Shortest Path Problem, Project planning and control with PERT and CPM

UNIT-III

Integer programming-Branch and Bound technique. Dynamic programming, Deterministic and Probabilistic Dynamic programming:

UNIT - IV

decision tree and Bellman's Principle of optimality, models of dynamic programming.

UNIT-V

Quadratic programming, Kuhn-Tucker conditions for quadratic programming problem, Wolf's modified simplex method, Beale's method Goal Programming simulation :Monte Carlo method.

REFERENCES

- 1. Taha H.A. (1982) Operational Research: An Introduction; Macmillan.
- 2. Hillier F.S. and Leiberman G.J. (1962) Introduction to Operations Research; Holden Day.
- 3. Kanti Swarup, Gupta, P.K. and Singh M.M. (1985) Operations Research; Sultan Chand& Sons.
- 4. Philips D.T., Ravindran A. and Solberg J. Operations Research, Principles and Practice.
- 5. Churchman C.W., Ackoff R.L. and Arnoff E.L.(1957) Introduction to Operations Research; John Wiley.

James

Paper -III (b)

ECONOMETRICS

Course Objective: This course will be useful in getting trends and approximation though regression models. Different procedure of econometrics models will be discussed under this course.

Course Outcome: On successful completion of the course, the student will be able to:

- **CO 1:** Understand basics of econometrics like autocorrelation, regression and errors in variables.
- CO 2: Explain autoregressive linear regression and lagged variables.
- **CO 3:** Interpret Auto correlation, its consequences and tests and instrumental variable.
- **CO 4:** Solve simultaneous equations model and recursive systems.
- **CO5:** Analyse the recursive systems for solving complex problems.

UNIT - I

Nature of econometrics, the general linear model (GLM) and its extensions, ordinary least squares (OLS) estimation and prediction, generalized least squares (GLS) estimation and prediction.

UNIT - II

heteroscedastic disturbances, pure and mixed estimation, Auto correlation, its consequences and tests. Theil BLUS procedure, estimation and prediction, multicollinearity problem, its implications and tools for handling the problem, ridge regression.

UNIT - III

Linear regression and stochastic regression, Instrumental variable estimation. Errors in variables.

Autoregressive linear regression, lagged variables, distributed lag models, estimation of lags by OLS method, Koyck's geometric lag model,

UNIT - IV

Simultaneous linear equations model and its generalization, identification problem, restrictions on structural parameters, rank and order conditions. Estimation in simultaneous equations model.

UNIT - V

recursive systems, 2 SLS estimators, limited information estimators, k-class estimators. 3 SLS estimator, full information maximum likelihood method, prediction and simultaneous confidence intervals.

REFERENCES:

- 1 Apte, P.G.(1990): Text books of Econometrics, Tata Mcgraw Hill.
- 2 Cramer, J.S.(1971): Empirical Econometrics, North Holland.
- 3 Gujarathi, D.(1979): Basic Econometrics, McGraw Hill.

Vanley.

- 4 Intrulligator, M.D.(1980): Econometric models-Techniques and applications, Prentice Hall of India.
- 5 Johnston, J.(1984): Econometric methods. Third edition, McGraw Hill.
- 6 Klein, L.R. (1962): An introduction to Econometrics, Prentice Hall of India.
- 7 Koutsoyiannis, A. (1979): Theory of Econometrics, Macmillan Press.
- 8 Malinvaud, E. (1966): Statistical methods of Econometrics, North Holland.
- 9 Srivastava, V.K. and Gelies D.A.E.(1987): Seemingly unrelated regression equations models, Maicel Dekker.
- 10 Theil, H. (1982): Introduction to the theory and practice of Econometrics, John Wiley.
- 11 Walters, A. (1970): An introduction to Econometrics, Macmillan & Co.
- 12 Wetherill, G.B.(1986): Regression analysis with application, Chapman Hall.

Elective -IV (Select any one)

Paper - IV (a) RELIABILITY THEORY

Course Objective: This course will be useful in industry for calculating guaranteed life time of products. Different procedure of reliability and life testing will be discussed under this course.

Course Outcome: On successful completion of the course, the student will be able to:

- CO 1: Discuss Basics of Reliability concepts and measures
- **CO 2:** understand life testing with some distributions.
- **CO 3:** Solve reliability estimation based on failure times in variously censored life tests.
- **CO 4:** understand stress-strength reliability and availability of repairable systems
- CO5: Explain Reliability growth models

UNIT -I

Reliability concepts and measures; reliability function; hazard rate; components and systems; coherent systems; reliability of coherent systems; cuts and paths; modular decomposition; bounds on system reliability; structural and reliability importance of components.

UNIT-II

Life distributions; common life distributions-exponential, Weibull, gamma etc. Estimation of parameters and tests in these models. Notions of ageing; IFR, IFRA, NBU, DMRL, and NBUE Classes and their duals;

UNIT -III

loss of memory property of the exponential distribution; closures or these classes under formation of coherent systems, convolutions and mixtures. Univariate shock models and life distributions arising out of them; bivariate shock models; common bivariate exponential distributions and their properties.

Jules

UNIT-IV

Reliability estimation based on failure times in variously censored life tests and in tests with replacement of failed items. Stress-strength reliability and its estimation. Maintainability and availability, Maintenance and replacement policies; availability of repairable systems;

UNIT-V

modeling of a repairable system by a non-homogeneous Poisson process. Reliability growth models; Hollander-Proschan and Deshpande tests for exponentiality; tests for HPP vs NHPP with repairable systems. Basic ideas of accelerated life testing.

REFERENCES:

- 1. Barlow R.E. and Prochan F.(1985) ,Statistical theory of reliability and life testing,Rinehart and Winston
- 2. Lawless J.F. (1982), Statistical Models and Methods of Life time data; John Wiley.
- 3. Bain L.J. and Engelhardt (1991); statistical Analysis of Reliability and Life testing Models, Marcel Dekker.
- 4. Nelson, W (1982); Applied Life data analysis; john Wiley.
- 5. Zacks S.; Reliability Theory, Springer.

Janles

Paper- IV (b)

ACTUARIAL STATISTICS

Outcome: Students will acquire knowledge of Actuarial Statistics in finance sector

CO1: Understand the basic of insurance Applications.

CO2: Explain the Principles of Premium Calculation in banking.

CO3: Use Survival Distribution and Life Tables in banking.

CO4: Apply life table characteristics in Banking.

CO5: Analyse Life Insurance models for investment or saving.

UNIT-I

IntroductoryStatisticsandInsuranceApplications:Discrete,continuousandmixedpr obability distributions. Insurance applications, sum of random variables. Utility theory:Utility functions, expected utility criterion, types of utility function, insurance and utilitytheory.

UNIT-II

Principles of Premium Calculation:Propertiesofpremiumprinciples, examplesofpremiumprinciples.

Individual risk models: models for individual claims, the sum of independent claims, approximations and their applications.

UNIT-III

Survival Distribution and Life Tables:Uncertainty of age at death, survival function, time-until-death for a person, curate future lifetime, force of mortality, life tables with examples

UNIT-IV

Deterministic survivorship group, life table characteristics, assumptions for fractional age, some analytical laws of mortality.

UNIT-V

Life Insurance: Models for insurance payable at the moment of death, insurance payable atthe end of the year of death and their relationships. Life annuities: continuous life annuities, discrete life annuities, life annuities with periodic payments. Premiums: continuous and discrete premiums.

SUGGESTEDREADING:

 $\label{linear_problem} Dickson, C.M.D. (2005): Insurance Risk And Ruin (International Series On Actuarial Science), Cambridge University Press.$

Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. And Nesbitt, C.J. (1997): Actuarial Mathematics, Society Of Actuaries, Itasca, Illinois, U.S.A.

Paper - V: Lab Course I:Practical based on Papers I and II

Paper - VI :Lab Course II: Practical based on Papers III and IV

Paper - VII: Project Work

James

M.Sc. (Statistics) Semester-I

(Offered to PG students of SoS in Statistics only)

Program	Subject	Year	Semester			
M.Sc.	Statistics	1	I			
Course Code	Cours	e Title	Course Type			
SAT 610		Indian Knowledge System (IKS)- Concepts and Statistics Tradition				
Credit	H	ours Per Week (L-	T-P)			
	L	T	P			
2	2					
Maximum Marks	CIA	i	ESE			
100	30	70				

Learning Objective (LO):

The course aims to:

- Sensitize the students about context in which they are embedded, i.e., Indian culture and civilisation including its Knowledge System and Tradition.
- Provide information about great mathematicians and astronomers who given significant contribution in Indian mathematics and astronomy.
- Help students to trace, identify, practice and develop the significant Indian mathematic.

Detailed Syllabus:

Unit	Topics	No. of
No.		Lectures
I	Indian Knowledge System (IKS) - An Introduction: What is IKS? Need of	6
	IKS. Organizations of IKS. Historicity of IKS, Some salient aspects of IKS.	
II	The Vedic Corpus: Introduction to Vedas. A synopsis of the four Vedas.	6
	Sub-classification of Vedas. Messages in Vedas. Introduction to Vedangas.	
	Prologue on Sikṣā and Vyākaraṇa. Basics of Nirukta and Chandas.	
	Introduction to Kalpa and Jyotisa. Vedic Life: A Distinctive Features.	
III	Wisdom through the Ages: Gateways of ancestral wisdoms. Introduction to	6
	Purāṇa. The Purāṇic repository. Issues of interest in Purāṇas. Introduction	
	to Itihāsas. Key messages in Itihāsas. Wisdom through Nīti-śāstras.	
	Wisdom through Subhāṣita.	
IV	Duet Vidya, National Statistics day, International Statistics Day, National	6
	Statistics System, Introduction about agencies- NSO and CSO, Directorate	
	of Economics and Statistics. Ministry of Planning and Statistics, Indian	,
	Statistical Institute.	
V	Indian contribution to Statistics, Prasanta Chandra Mahalanobis, C. R. Rao,	6
	Devbrata Basu, Samarendra Nath Roy, P. V. Sukhatmi, Raj Chandra Bose,	
	Kanti Lal Mardia, K. C. Sreedhaan Pillai, Pranab K. Sen, B. L. S. Prakash	
	Rao, V. S. Huzurbazar, Jyant Kumar Ghosh.	

Books Recommended:

1. B. Mahadevan, Vinayak Rajat Bhat, R.N. Nagendra Pavana, Introduction to Indian Knowledge System: Concepts and Applications, PHI Learning Pvt. Ltd., 2022.

Reference Books:

- 2. K. Kapur A.K. Singh (Eds), Indian Knowledge Systems, Vol. 1 & 2. D.K. Print world Pvt. Ltd., 2005
- 3. शशिबाला, ओम विकास, अशोक प्रधान (संपादक), भारती विद्या सार-1, भारतीय विद्या भवन, 2018.
- 4. S. B. Rao, Indian Mathematics and Astronomy: Some Landmarks (Revised Third Edition), Bhartiya Vidhya Bhavan, 2012,
- 5. B.S. Yadav, Ancient Indian Leaps into Mathematics, Birkausher Publication, 2010
- 6. Dharampal, Indian Science and Technology in the Eighteenth Century, Other India Press, 2000
- 7. Dharampal, The Beautiful Tree: Indigenous Indian Education in the Eighteenth Century, Other India Press, 2000.

Jaley